Structure, stability, and electronic properties of thin TiO2 nanowires of different novel shapes: An abs-initio study

Document Type : Article


1 Department of ECE, Madanapalle Institute of Technology and Science, Madanapalle-517325, India.

2 Department of Electrical Engineering, NIT Silchar, Assam-788010, India.

3 Department of Electronics and Communication Engineering, NIT Silchar, Assam-788010, India.


This paper investigates on the structural stability and electronic properties of titanium dioxide (TiO2) nanowires of different novel shapes using first- principle based density functional approach. Out of linear, ladder, saw tooth, square, triangular, hexagonal, and octahedron shaped atomic configuration, the ladder shape atomic configuration is energetically most stable. After computation of lattice parameters as well as various mechanical properties of nanowire TiO2, it is seen that highest bulk moduli is obtained for triangular TiO2 nanowire which shows the highest mechanical strength for the structure whereas hexagonal configuration has lowest Bulk moduli which shows the lowest mechanical strength for the structure. Analysis of various electronic properties show that different configurations of TiO2 nanowires can have different utility as solid state materials.


Main Subjects

1. Nouri, N. and Ziaei-Rad, S. Mechanical property evaluation of carbon nanotube sheets", Sci. Iran., 17(2), pp. 90-101 (2010). 2. Sinha, S.K. and Chaudhury, S. Impact of oxide thickness on gate capacitance - A comprehensive analysis on MOSFET, nanowire FET, and CNTFET devices", IEEE Trans. Nanotechnol., 12(6), pp. 958-964 (2013). 3. Sinha, S.K. and Chaudhury, S. Comparative study of leakage power in CNTFET over MOSFET device", J. Semicond., 35, 114002 (2014). 4. Rezania, H., Goli, S., and Jazideh, A. Electrical conductivity of doped armchair graphene nanoribbon in the presence of gap parameter", Sci. Iran., 25(3), pp. 1808-1814 (2018). 5. Mohammadzadeh Honarvar, F., Pourabbas, B., Salami Hosseini, M., Kharazi, M., and Erfan-Niya, H. Molecular dynamics simulation: The e_ect of graphene on the mechanical properties of epoxy based photoresist: SU8", Sci. Iran., 25(3), pp. 1879-1890 (2018). 6. Lieber, C.M. Semiconductor nanowires: A platform for nanoscience and nanotechnology", MRS Bulletin, 36, pp. 1052-1063 (2011). 7. Lu, W. and Lieber, C.M. Semiconductor nanowires", J. Phys. D-Applied Phys., 39(21), pp. R387-R406 (2006). 8. Zhang, W., Zhu, R., Liu, X., Liu, B., and Ramakrishna, S. Facile construction of nano_brous ZnO photoelectrode for dye-sensitized solar cell applications", Appl. Phys. Lett., 95(4), pp. 2-5 (2009). 9. Zuruzi, A.S., Kolmakov, A., MacDonald, N.C., and Moskovits, M. Highly sensitive gas sensor based on integrated titania nanosponge arrays", Appl. Phys. Lett., 88(10), pp. 102904-102906 (2006). 10. O'Regan, B. and Gratzel, M. A low-cost, highe _ciency solar cell based on dye-sensitized colloidal TiO2 _lms", Nature, 353(6346), pp. 737-740 (1991). 11. Srivastava, A., Tyagi, N., and Ahuja, R. Firstprinciples study of structural and electronic properties of gallium based nanowires", Solid State Sci., 23, pp. 35-41 (2013). 12. Wang, J., Gudiksen, M.S., Duan, X., Cui, Y., and Lieber, C.M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires", Science, 293(5534), pp. 1455-1457 (2001). 13. Yanson, A.I., Rubio Bollinger, G., Van Den Brom, H.E., Agra_t, N., and Van Ruitenbeek, J.M. Formation and manipulation of a metallic wire of single gold atoms", Nature, 395(6704), pp. 783-785 (1998). 14. Pan, Y. and Guan, W.M. Prediction of new phase and electrochemical properties of Li2S2 for the application of Li-S batteries", Inorg. Chem., 57(11), pp. 6617-6623 (2018). 15. Chander, S., Purohit, A., Sharma, A., Nehra, S.P., and Dhaka, M.S. Impact of temperature on performance of series and parallel connected mono-crystalline silicon solar cells", Energy Reports, 1, pp. 175-180 (2015). 16. Becker, C. Polycrystalline silicon thin-_lm solar cells: Status and perspectives", Sol. Energy Mater. Sol. Cells, 119, pp. 112-123 (2013). 17. Meillaud, F. Recent advances and remaining challenges in thin-_lm silicon photovoltaic technology", Mater. Today, 18(7), pp. 378-384 (2015). 18. Muller, J., Rech, B., Springer, J., and Vanecek, M. TCO and light trapping in silicon thin _lm solar cells", Sol. Energy, 77, pp. 917-930 (2004). 19. Poplawsky, J.D. Cadmium telluride solar cells: Record-breaking voltages", Nat. Energy, 1(3), p. 16021 (2016). 20. Ramanujam, J. and Singh, U.P. Copper indium gallium selenide based solar cells-a review", Energy Environ. Sci., 10, pp. 1306-1319 (2017). 21. Routray, S., Shougaijam, B., and Lenka, T.R. Exploiting polarization charges for high-performance (000-1) facet GaN/InGaN/GaN Core/Shell/Shell tringular nanowire solar cell", IEEE J. Quantum Electron., 53(5), pp. 1-8 (2017). 22. Blakemore, J.S. Semiconducting and other major properties of gallium arsenide", J. Appl. Phys., 53, p. R123 (1982). 23. Gratzel, M. Dye-sensitized solar cells", Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2). pp. 145-153 (2003). 24. Dash, D., Pandey, C.K., Chaudhury, S., and Tripathy, S.K. Structural, electronic, and mechanical properties of cubic TiO2: A _rst-principles study", Chinese Phys. B, 27(1), pp. 1-9 (2018). 25. Dash, D., Chaudhury, S., and Tripathy, S.K. First principle investigation of structural and optical properties of cubic titanium dioxide", in AIP Conference Proceedings, 1953(1) (2018). 26. Pan, Y. Role of S-S interlayer spacing on the hydrogen storage mechanism of MoS2", Int. J. Hydrogen Energy, 43(6), pp. 3087-3091 (2018). 1960 D. Dash et al./Scientia Iranica, Transactions F: Nanotechnology 26 (2019) 1951{1961 27. Pan, Y. and Guan, W. Prediction of new stable structure, promising electronic and thermodynamic properties of MoS3 : Ab initio calculations", J. Power Sources, 325, pp. 246-251 (2016). 28. Pan, Y. and Guan, W. E_ect of sulfur concentration on structural, elastic and electronic properties of molybdenum sul_des from _rst-principles", Int. J. Hydrogen Energy, 41, pp. 11033-11041 (2016). 29. Fujishima, A. and Honda, K. Electrochemical photolysis of water at a semiconductor electrode", Nature, 238(5358), pp. 37-38 (1972). 30. Bin Wu, H., Chen, J.S., Hng, H.H., Wen, D., and Lou, X. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries", Nanoscale, 4, pp. 2526-2542 (2012). 31. Zhang, Q., Sun, C., Yan, J., Hu, X., Zhou, S., and Chen, P. Perpendicular rutile nanosheets on anatase nano _bers: Heterostructured TiO2 nanocomposites via a mild solvothermal method", Solid State Sci., 12(7), pp. 1274-1277 (2010). 32. Srivastava, P. and Singh, S. Electronic properties of GaP nanowires of di_erent shapes", J. Nanosci. Nanotechnol., 11(12), pp. 10464-10469 (2011). 33. Srivastava, A. and Tyagi, N. Structural and electronic properties of AlX (X=P, As, Sb) nanowires: Ab initio study", Mater. Chem. Phys., 137(1), pp. 103-112 (2012). 34. Tafen, D. and Lewis, J. Structure, stability, and electronic properties of thin TiO2 nanowires", Phys. Rev. B, 80(1), pp. 014104-014108 (2009). 35. Hohenberg, P. and Kohn, W. The inhomogeneous electron gas", Phys. Rev., 136(3B), p. B864 (1964). 36. Kohn, W. and Sham, L.J. Self-consistent equations including exchange and correlation e_ects", Phys. Rev., 140, p. A1133 (1965). 37. Dash, D., Chaudhury, S., and Tripathy, S.K. A density functional theory-based study of electronic and optical properties of anatase titanium dioxide", Advances in Communication, Devices, and Networking, Lecture Notes on Electrical Engineering, 462, pp. 57- 67 (2018). 38. Broyden, C.G. The convergence of a class of doublerank minimization algorithms 1. General considerations", IMA J. Appl. Math. (Institute Math. Its Appl., 6(1), pp. 76-90 (1970). 39. Fletcher, R. A new approach to variable metric algorithms", Comput. J., 13(3), pp. 317-322 (1970). 40. Goldfarb, D. A family of variable-metric methods derived by variational means", Math. Comput., 24, pp. 23-26 (1970). 41. Shanno, D.F. and Kettler, P.C. Optimal conditioning of quasi-Newton methods", Math. Comput., 24, pp. 657-664 (1970). 42. Zhang, Y. and Yang, W. Comment on 'generalized gradient approximation made simple", Physical Review Letters, 80, p. 890 (1998). 43. Hammer, B., Hansen, L.B., and N_rskov, J.K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals", Phys. Rev. B-Condens. Matter Mater. Phys., 59, p. 7413 (1999). 44. Brandbyge, M., Mozos, J.L., Ordej_on, P., Taylor, J., and Stokbro, K. Density-functional method for nonequilibrium electron transport", Phys. Rev. BCondens. Matter Mater. Phys., 65(16), p. 165401 (2002). 45. Stokbro, K., Taylor, J., Brandbyge, M., and Ordej_on, P. TranSIESTA: A spice for molecular electronics", in Annals of the New York Academy of Sciences, 1006, pp. 212-226 (2003). 46. Taylor, J., Guo, H., and Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices", Phys. Rev. B, 63, p. 245407 (2001). 47. Soler, J.M. The SIESTA method for abs initio order- N materials simulation", J. Phys. Condens. Matter, 14(11), pp. 2745-2779 (2002). 48. Pan, Y. and Wen, M. The inuence of vacancy on the mechanical properties of IrAl coating: First-principles calculations", Thin Solid Films, 664, pp. 46-51 (2018). 49. Pan, Y. RuAl2: Structure, electronic and elastic properties from _rst-principles", Mater. Res. Bull., 93, pp. 56-62 (2017). 50. Pan, Y. and Jin, C. Vacancy-induced mechanical and thermodynamic properties of B2-RuAl", Vacuum, 143, pp. 165-168 (2017). 51. Pan, Y., Wang, S.L., and Zhang, C.M. Ab-initio investigation of structure and mechanical properties of PtAlTM ternary alloy", Vacuum, 151, pp. 205-208 (2018). 52. Pan, Y., Wang, P., and Zhang, C.M. Structure, mechanical, electronic and thermodynamic properties of Mo5Si3 from _rst-principles calculations", Ceram. Int., 44(11), pp. 12357-12362 (2018). 53. Murnaghan, F.D. The compressibility of media under extreme pressures", Proc. Natl. Acad. Sci., 30(9), pp. 244-247 (1944). 54. Gai, L., Mei, Q., Qin, X., Li, W., Jiang, H., and Duan, X. Controlled synthesis of anatase TiO2 octahedra with enhanced photocatalytic activity", Mater. Res. Bull., 48(11), pp. 4469-4475 (2013).