Hyperelastic modeling of sino-nasal tissue for haptic neurosurgery simulation

Document Type : Article

Authors

1 Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran

2 Vali-e-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract

The aim of this research was to provide a simple yet realistic model of the sino-nasal tissue as a major requirement for developing more efficient endoscopic neurosurgery simulation systems. Ex-vivo indention tests were performed on the orbital floor soft tissue of four sheep specimens. The resulting force-displacement data was incorporated into an inverse finite element model to obtain the hyperelastic mechanical properties of the tissue. Material characterization was performed for Polynomial, Yeoh, Mooney-Rivlin and Neo-Hookean hyperelastic models, using a Sequential Quadratic Programming algorithm. Experimental results indicated a relatively large elastic deformation, up to 6mm, during indentation test with a considerable nonlinearity in the force-displacement response. All hyperelastic models could satisfy the convergence criteria of the optimization procedure, with the highest convergence rate and a close fittings accuracy associated with the Yeoh hyperelastic model. The initial guess of the material constants was found to affect the number of iterations before converging, but not the optimization results. The normalized mean square errors of fitting between the model and experimental curves were obtained as 2.39%, 4.26% and 4.65% for three sheep samples, suggesting that the Yeoh model can adequately describe the typical hyperelastic mechanical behavior of the sino-nasal tissue for surgery simulation.

Keywords

Main Subjects


1. Al-Mujaini, A., Wali, U., and Alkhabori, M. Functional  endoscopic sinus surgery: indications and complications  in the ophthalmic _eld", Oman Medical  Journal, 24(2), pp. 70{80 (2009).  2. Wurm, J., Dannenmann, T., Bohr, C., Iro, H., and  Bumm, K. Increased safety in robotic paranasal sinus  and skull base surgery with redundant navigation and  automated registration", The International Journal of  Medical Robotics and Computer Assisted Surgery, 1(3),  pp. 42{48 (2005).  3. Varshney, R., Frenkiel, S., Nguyen, L.H., Young,  M., Del Maestro, R., Zeitouni, A., Saad, E., Funnell,  W.R.J., and Tew_k, M.A. The McGill simulator  for endoscopic sinus surgery (MSESS): a validation  study", Journal of Otolaryngology-Head & Neck  Surgery, 43(1), p. 40 (2014).  4. Delgado-Vargas, B., Romero-Salazar, A.L., Burneo,  P.M.R., Hincapie, C.V., de los Santos Granado, G.,  del Castillo L_opez, R., Arnau, C.F., and Marco, I.C.  Evaluation of resident's training for endoscopic sinus  surgery using a sheep's head", European Archives of  Oto-Rhino-Laryngology, 273(8), pp. 2085{2089 (2016).  5. Kuhnapfel, U., Cakmak, H.K., and Maa, H. Endoscopic  surgery training using virtual reality and  deformable tissue simulation", Computers & Graphics,  24(5), pp. 671{682 (2000).  6. Parikh, S.S., Chan, S., Agrawal, S.K., Hwang, P.H.,  Salisbury, C.M., Ra_i, B.Y., Varma, G., Salisbury,  K.J., and Blevins, N.H. Integration of patient-speci_c  paranasal sinus computed tomographic data into a  virtual surgical environment", American Journal of  Rhinology & Allergy, 23(4), pp. 442{447 (2009).  7. Acar, B., Gunbey, E., Babademez, M.A., Karabulut,  H., Gunbey, H.P., and Karasen, R.M. Utilization and  dissection for endoscopic sinus surgery training in the  residency program", Journal of Craniofacial Surgery,  21(6), pp. 1715{1718 (2010).  8. Delorme, S., Laroche, D., DiRaddo, R., and Del  Maestro, R.F. NeuroTouch: a physics-based virtual  simulator for cranial microneurosurgery training", Operative  Neurosurgery, 71(1 Suppl Operative), pp. 32{  42 (2012).  9. Zhao, Y.C., Kennedy, G., Yukawa, K., Pyman, B.,  and O'Leary, S. Can virtual reality simulator be used  as a training aid to improve cadaver temporal bone  dissection? Results of a randomized blinded control  trial", The Laryngoscope, 121(4), pp. 831{837 (2011).  10. Kolbari, H., Sadeghnejad, S., Bahrami, M., and Ali,  K.E. Adaptive control of a robot-assisted tele-surgery  S. Sadeghnejad et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 1266{1276 1275  in interaction with hybrid tissues", Journal of Dynamic  Systems, Measurement, and Control, 140(12),  p. 121012 (2018).  11. Wiet, G.J., Stredney, D., and Wan, D. Training and  simulation in otolaryngology", Otolaryngologic Clinics  of North America, 44(6), pp. 1333{1350 (2011).  12. Kolbari, H., Sadeghnejad, S., Bahrami, M., and Kamali,  A. Bilateral adaptive control of a teleoperation  system based on the hunt-crossley dynamic model",  In: Robotics and Mechatronics (ICROM), 3rd RSI  International Conference on 2015, pp. 651{656, IEEE  (2015).  13. Kolbari, H., Sadeghnejad, S., Bahrami, M., and  Kamali, E.A. Nonlinear adaptive control for teleoperation  systems transitioning between soft and hard  tissues", In: Robotics and Mechatronics (ICROM),  2015 3rd RSI International Conference on, pp. 055{  060, IEEE (2015).  14. Piromchai, P. Virtual reality surgical training in ear,  nose and throat surgery", International Journal of  Clinical Medicine, 5, pp. 558{566 (2014).  15. Rosseau, G., Bailes, J., del Maestro, R., Cabral, A.,  Choudhury, N., Comas, O., Debergue, P., De Luca,  G., Hovdebo, J., and Jiang, D. The development of  a virtual simulator for training neurosurgeons to perform  and perfect endoscopic endonasal transsphenoidal  surgery" Neurosurgery, 73, pp. S85{S93 (2013).  16. Samur, E., Sedef, M., Basdogan, C., Avtan, L., and  Duzgun, O. A robotic indenter for minimally invasive  measurement and characterization of soft tissue  response", Medical Image Analysis, 11(4), pp. 361{373  (2007).  17. Sadeghnejad, S., Esfandiari, M., Farahmand, F., and  Vossoughi, G. Phenomenological contact model characterization  and haptic simulation of an endoscopic sinus  and skull base surgery virtual system", In Robotics  and Mechatronics (ICROM), 4th International Conference  on, pp. 84{89, IEEE (2016).  18. Ebrahimi, A., Sadeghnejad, S., Vossoughi, G., Moradi,  H., and Farahmand, F. Nonlinear adaptive impedance  control of virtual tool-tissue interaction for use in endoscopic  sinus surgery simulation system", In: Robotics  and Mechatronics (ICROM), 4th International Conference  on 2016, pp. 66{71, IEEE (2016).  19. Fu, Y. and Chui, C. Modelling and simulation of  porcine liver tissue indentation using _nite element  method and uniaxial stress{strain data", Journal of  Biomechanics, 47(10), pp. 2430{2435 (2014).  20. Cheng, L. and Hannaford, B. Evaluation of liver  tissue damage and grasp stability using _nite element  analysis", Computer Methods in Biomechanics and  Biomedical Engineering, 19(1), pp. 31{40 (2016).  21. Dehghani Ashkezari, H., Mirbagheri, A., Behzadipour,  S., and Farahmand, F. A mass-spring-damper model  for real time simulation of the frictional grasping  interactions between surgical tools and large organs",  Scientia Iranica, 22(5), pp. 1833{1841 (2015).  22. Zeng, Y., Yager, D., and Fung, Y. Measurement of  the mechanical properties of the human lung tissue",  Journal of Biomechanical Engineering, 109(2), pp.  169{174 (1987).  23. Al-Mayah, A., Moseley, J., and Brock, K. Contact  surface and material nonlinearity modeling of human  lungs", Physics in Medicine & Biology, 53, p. 305  (2007).  24. Saghaei Nooshabadi, Z., Abdi, E., Farahmand, F.,  Narimani, R., and Chizari, M. A meshless method  to simulate the interactions between a large soft tissue  and a surgical grasper", Scientia Iranica, 23(1), pp.  295{300 (2016).  25. Mehrabian, H., Campbell, G., and Samani, A. A  constrained reconstruction technique of hyperelasticity  parameters for breast cancer assessment", Physics in  Medicine and Biology, 55(24), p. 7489 (2010).  26. Naini, A.S., Patel, R.V., and Samani, A. Measurement  of lung hyperelastic properties using inverse _nite  element approach. Biomedical Engineering", IEEE  Transactions on, 58(10), pp. 2852{2859 (2011).  27. Cheng, L. and Hannaford, B. Finite element analysis  for evaluating liver tissue damage due to mechanical  compression", Journal of Biomechanics, 48(6), pp.  948{955 (2015).  28. Kobayashi, Y., Kato, A., Watanabe, H., Hoshi, T.,  Kawamura, K., and Fujie, M.G. Modeling of viscoelastic  and nonlinear material properties of liver  tissue using fractional calculations", Journal of Biomechanical  Science and Engineering, 7(2) pp. 177{187  (2012).  29. Fallah, A., Ahmadian, M.T., and Aghdam, M.M.  Rate-dependent behavior of connective tissue through  a micromechanics-based hyper viscoelastic model",  International Journal of Engineering Science, 121, pp.  91{107 (2017).  30. Panda, S.K. and Buist, M.L. A _nite nonlinear hyperviscoelastic  model for soft biological tissues", Journal  of Biomechanics, 69, pp. 121{128 (2018).  31. Karimi, A., Navidbakhsh, M., Haghi, A.M., and  Faghihi, S. Measurement of the uniaxial mechanical  properties of rat brains infected by plasmodium  berghei ANKA", Proceedings of the Institution of  Mechanical Engineers, Part H: Journal of Engineering  in Medicine, 227(5), pp. 609{614 (2013).  32. Karimi, A., Navidbakhsh, M., Youse_, H., Haghi,  A.M., and Sadati, S.A. Experimental and numerical  study on the mechanical behavior of rat brain tissue",  Perfusion, 29(4), pp. 307-314 (2014).  33. Rashid, B., Destrade, M., and Gilchrist, M.D. Mechanical  characterization of brain tissue in simple shear  at dynamic strain rates", Journal of the Mechanical  Behavior of Biomedical Materials, 28, pp. 71{85  (2013).  34. Tr_evillot, V., Sobral, R., Dombre, E., Poignet, P.,  Herman, B., and Crampette, L. Innovative endoscopic  sino-nasal and anterior skull base robotics",  1276 S. Sadeghnejad et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 1266{1276  International Journal of Computer Assisted Radiology  and Surgery, 8(6), pp. 977{987 (2013).  35. Martin, C., Pham, T., and Sun, W. Signi_cant  di_erences in the material properties between aged  human and porcine aortic tissues", European Journal  of Cardio-Thoracic Surgery, 40(1), pp. 28{34 (2011).  36. Rivlin, R.S. and Saunders, D. Large elastic deformations  of isotropic materials. VII. Experiments on  the deformation of rubber", Philosophical Transactions  of the Royal Society of London A: Mathematical,  Physical and Engineering Sciences, 243(865), pp. 251{  288 (1951).  37. Kaster, T., Sack, I., and Samani, A. Measurement  of the hyperelastic properties of ex vivo brain tissue  slices", Journal of Biomechanics, 44(6), pp. 1158{1163  (2011).  38. Yeoh, O. Characterization of elastic properties  of carbon-black-_lled rubber vulcanizates", Rubber  Chemistry and Technology, 63(5), pp. 792{805 (1990).  39. Mehrabian, H. and Samani, A. An iterative hyperelastic  parameters reconstruction for breast cancer  assessment" In: Medical Imaging, 6916, 69161C.  International Society for Optics and Photonics (2008).  40. Mooney, M. A theory of large elastic deformation",  Journal of Applied Physics, 11(9) pp. 582{592 (1940).  41. Ogden, R.W., Non-linear Elastic Deformations,  Courier Corporation (1997).  42. Manual, A.U., Version 6.14{1, Dassault Syst_emes  Simulia Corp., Providence, RI.  43. Schittkowski, K. NLPQL: A FORTRAN subroutine  solving constrained nonlinear programming problems",  Annals of Operations Research, 5(2), pp. 485{500  (1986).  44. Guide, M.U.s., The mathworks, Inc., Natick, MA 5 p.  333 (1998).  45. HadamarDi_erential Equations, Courier Corporation,  (2014).