Vibrational analysis of fullerene hydrides using AIREBO potential

Document Type : Article


Computational Nano Mechanics Laboratory, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran


In this paper, the vibrational properties of fullerene hydrides with the chemical formula C60H2n are investigated using a method based on the potential energy of the molecule. The potential used in this methodology is AIREBO (Adaptive Intermolecular Reactive Empirical Bond Order). Using this interatomic potential, some of the most important frequencies of the fullerene hydrides, such as the breathing mode frequency, were calculated and then analyzed. It was observed that in addition to the number of hydrogen atoms in the structure, their position on the C60 cage has a significant effect on the natural frequency corresponding to a particular mode shape. The results obtained by this method have been compared and validated with quantum mechanics and experimental observations. The simulations results demonstrate that the proposed method is capable of calculating the vibrational properties of fullerene hydrides with high precision and low computational cost.


Main Subjects

1. Kroto, H.W., Heath, J.R., O'Brien, S.C., et al. C60: buckminsterfullerene", Nature, 318(6042), pp. 162{ 163 (1985). 2. Thotakura, N., Sharma, G., Singh, B., Kumar, V., and Raza, K. Aspartic acid derivatized hydroxylated fullerenes as drug delivery vehicles for docetaxel: An explorative study", Arti_cial Cells, Nanomedicine, and Biotechnology, 46(8), pp. 1763{1772 (2018). 3. Mohajeri, M., Behnam, B., and Sahebkar, A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials", Journal of Cellular Physiology, 234(1), pp. 298{319 (2018). 4. Olov, N., Bagheri-Khoulenjani, S., and Mirzadeh, H. Combinational drug delivery using nanocarriers for breast cancer treatments: A review", Journal of Biomedical Materials Research Part A, 106(8), pp. 2272{2283 (2018). 5. Fakhraee, S. and Souri, M. Deformation density components analysis of fullerene-based anti-HIV drugs", Journal of Molecular Modeling, 20(11), p. 2486 (2014). 6. Faraji, H., Nedaeinia, R., Nourmohammadi, E., Malaekeh-Nikouei, B., Sadeghnia, H.R., Ziapour, S.P., Sarkarizi, H.K, and Oskuee R.K. A review on application of novel solid nanostructures in drug delivery", In Journal of Nano Research, 53(1), pp. 22{36 (2018). 7. Hu, Y., Shenderova, O.A., Hu, Z., et al. Carbon nanostructures for advanced composites", Reports on Progress in Physics, 69(6), p. 1847 (2006). 1942 A. Golzari and H. Nejat Pishkenari/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 1933{1944 8. Barrera, E.V., Sims, J., Callahan, D.L., et al. Processing of fullerene-reinforced composites", Journal of Materials Research, 9(10), pp. 2662{2669 (1994). 9. Dang, B., Hu, J., Zhou, Y., et al. Remarkably improved electrical insulating performances of lightweight polypropylene nanocomposites with fullerene", Journal of Physics D: Applied Physics, 50(45), p. 455303 (2017). 10. Miura, K., Kamiya, S., and Sasaki, N. C60 molecular bearings", Physical Review Letters, 90(5), p. 055509 (2003). 11. Legoas, S.B., Giro, R., and Galvao, D.S. Molecular dynamics simulations of C60 nanobearings", Chemical Physics Letters, 386(4), pp. 425{429 (2004). 12. Pishkenari, H.N., Nemati, A., Meghdari, A., et al. A close look at the motion of C60 on gold", Current Applied Physics, 15(11), pp. 1402{1411 (2015). 13. Nemati, A., Pishkenari, H.N., Meghdari, A., et al. Directing the di_usive motion of fullerene-based nanocars using nonplanar gold surfaces", Physical Chemistry Chemical Physics, 20(1), pp. 332{344 (2018). 14. Shirai, Y., Osgood, A.J., Zhao, Y., et al. Directional control in thermally driven single-molecule nanocars", Nano Lett, 5(11), pp. 2330{2334 (2005). 15. Ahangari, M.G., Ganji, M.D., and Jalali, A. Interaction between fullerene-wheeled nanocar and gold substrate: A DFT study", Physica E: Low-Dimensional Systems and Nanostructures, 83, pp. 174{179 (2016). 16. Nemati, A., Meghdari, A., Pishkenari, H.N., et al. Investigation into thermally activated migration of fullerene-based nanocars", Scientia Iranica, 25(3), pp. 1835{1848 (2018). 17. Nemati, A., Pishkenari, H.N., Meghdari, A., et al. Nanocar & nanotruck motion on gold surface", IEEE International Conference on Manipulation, Automation, and Robotics at Small Scales (MARSS), pp. 1{6 (2016). 18. Varma, C.M., Zaanen, J., and Raghavachari, K. Superconductivity in the fullerenes", Science, 254(5034), pp. 989{992 (1991). 19. Joachim, C., Gimzewski, J.K., and Aviram, A. Electronics using hybrid-molecular and mono-molecular devices", Nature, 408(6812), pp. 541{548 (2000). 20. Doh, J. and Lee, J. Prediction of the mechanical behavior of double walled-CNTs using a molecular mechanics-based _nite element method: E_ects of chirality", Computers & Structures, 169, pp. 91{100 (2016). 21. Avila, A.F., Eduardo, A.C., and Neto, A.S. Vibrational analysis of graphene based nanostructures", Computers & Structures, 89(11{12), pp. 878{892 (2011). 22. Meilunas, R., Chang, R.P.H., Liu, S., et al. Infrared and Raman spectra of C60 and C70 solid _lms at room temperature", Journal of Applied Physics, 70(9), pp. 5128{5130 (1991). 23. Neugebauer, J., Reiher, M., Kind, C., et al. Quantum chemical calculation of vibrational spectra of large molecules-Raman and IR spectra for buckminsterfullerene", Journal of Computational Chemistry, 23(9) pp. 895{910 (2002). 24. Adams, G.B., Page, J.B., Sankey, O.F., et al. Firstprinciples quantum molecular-dynamics study of the vibrations of icosahedral C60", Physical Review B., 44(8) p. 4052 (1991). 25. Negri, F., Orlandi, G., and Zerbetto, F. Quantumchemical investigation of Franck-Condon and Jahn- Teller activity in the electronic spectra of Buckminsterfullerene", Chemical Physics Letters, 144(1), pp. 31{37 (1988). 26. Giannozzi, P. and Baroni, S. Vibrational and dielectric properties of C60 from density-functional perturbation theory", The Journal of Chemical Physics, 100(11), pp. 8537{8539 (1994). 27. Ansari, R., Sadeghi, F., and Ajori, S. Continuum and molecular dynamics study of C60 fullerene-carbon nanotube oscillators", Mechanics Research Communications, 47, pp. 18{23 (2013). 28. Ghavanloo, E. and Fazelzadeh, S.A. Continuum modeling of breathing-like modes of spherical carbon onions", Physics Letters A., 379(26), pp. 1600{1606 (2015). 29. Adhikari, S. and Chowdhury, R. Vibration spectra of fullerene family", Physics Letters A. 375(22), pp. 2166{2170 (2011). 30. Pishkenari, H.N. and Ghanbari, P.G. Vibrational analysis of the fullerene family using Terso_ potential", Current Applied Physics, 17(1), pp. 72{77 (2017). 31. Pishkenari, H.N. and Ghanbari, P.G. Vibrational properties of C60: A comparison among di_erent interatomic potentials", Computational Materials Science, 122, pp. 38{45 (2016). 32. Jing, D. and Pan, Z. Molecular vibrational modes of C60 and C70 via _nite element method", European Journal of Mechanics-A/Solids, 28(5), pp. 948{954 (2009). 33. Braun, M., Aranda-Ruiz, J., Rodr _guez-Mill_an, M., et al. On the bulk modulus and natural frequency of fullerene and nanotube carbon structures obtained with a beam based method", Composite Structures, 187, pp. 10{17 (2018). 34. Sarvi, M.N. and Ahmadian, M.T. Static and vibrational analysis of fullerene using a newly designed spherical super element", Scientia Iranica, 19(5), pp. 1316{1323 (2012). 35. Lee, J.H., Lee, B.S., Au, F.T.K., et al. Vibrational and dynamic analysis of C60 and C30 fullerenes using FEM", Computational Materials Science, 56, pp. 131{ 140 (2012). 36. Eisler, H.-J., Gilb, S., Hennrich, F.H., et al. Low frequency raman active vibrations in fullerenes. 1. Monopolar modes", The Journal of Physical Chemistry A., 104(8), pp. 1762{1768 (2000). A. Golzari and H. Nejat Pishkenari/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 1933{1944 1943 37. Dresselhaus, M.S., Jorio, A., Dresselhaus, G., et al. Raman spectroscopy of nanoscale carbons and of an isolated carbon nanotube", Molecular Crystals and Liquid Crystals, 387(1), pp. 21{29 (2002). 38. Ghavanloo, E., Fazelzadeh, S.A., and Ra_i-Tabar, H. Analysis of radial breathing-mode of nanostructures with various morphologies: a critical review", International Materials Reviews, 60(6), pp. 312{329 (2015). 39. Ghavanloo, E. and Fazelzadeh, S.A. Nonlocal shell model for predicting axisymmetric vibration of spherical shell-like nanostructures", Mechanics of Advanced Materials and Structures, 22(7), pp. 597{603 (2015). 40. Khan, A.I., Navid, I.A., Noshin, M., et al. Equilibrium molecular dynamics (MD) simulation study of thermal conductivity of graphene nanoribbon: A comparative study on MD potentials", Electronics, 4(4), pp. 1109{1124 (2015). 41. Matus, M. and Kuzmany, H. Raman spectra of singlecrystal C60", Applied Physics A: Materials Science & Processing, 56(3), pp. 241{248 (1993). 42. Meletov, K.P., Krestinin, A.V., Arvanitidis, J., et al. Temperature e_ects in the Raman spectra of bundled single-wall carbon nanotubes", Chemical Physics Letters, 477(4), pp. 336{339 (2009). 43. Kwon, Y.-K., Berber, S., and Tom_anek, D. Thermal contraction of carbon fullerenes and nanotubes", Physical Review Letters, 92,(1) p. 015901 (2004). 44. Drelinkiewicz, A., Byszewski, P., and Bielanski, A. Catalytic hydrogenation of C60 fullerene", Reaction Kinetics and Catalysis Letters, 59(1) pp. 19{27 (1996). 45. Jin, C., Hettich, R., Compton, R., et al. Direct solidphase hydrogenation of fullerenes", The Journal of Physical Chemistry, 98(16), pp. 4215{4217 (1994). 46. Osaki, T., Tanaka, T., and Tai, Y. Hydrogenation of C60 on alumina-supported nickel and thermal properties of C60H36", Physical Chemistry Chemical Physics, 1(9), pp. 2361{2366 (1999). 47. Billups, W.E., Luo, W., Gonzalez, A., et al. Reduction of C60 using anhydrous hydrazine", Tetrahedron Letters, 38(2), pp. 171{174 (1997). 48. Mandrus, D., Kele, M., Hettich, R.L., et al. Sonochemical synthesis of C60H2", The Journal of Physical Chemistry B., 101(2), pp. 123{128 (1997). 49. Morosin, B., Henderson, C., and Schirber, J.E. Stoichiometrically controlled direct solid-state synthesis of C60H2", Applied Physics A, 59(2), pp. 179{180 (1994). 50. Ruchardt, C., Gerst, M., Ebenhoch, J., et al. Transfer hydrogenation and deuteration of buckminsterfullerene C60 by 9, 10-dihydroanthracene and 9, 90, 10, 100[D4] dihydroanthracene", Angewandte Chemie International Edition, 32(4), pp. 584{586 (1993). 51. Cataldo, F. and Iglesias-Groth, S., Fulleranes: The Hydrogenated Fullerenes, 2, Springer Science & Business Media (2010). 52. Tokunaga, K., Ohmori, S., Kawabata, H., et al. A density functional theory study on the hole transfer in fullerene hydride C60H2", Japanese Journal of Applied Physics, 47(2R), p. 1089 (2008). 53. Tokunaga, K., Kawabata, H., and Matsushige, K. Improvement in hole-transport property of fullerene materials by hydrogenation: A density functional theory study on fullerene hydride C60H4", Japanese Journal of Applied Physics, 47(5R), p. 3638 (2008). 54. Hauer, R.E., Conceicao, J., Chibante, L.P.F., et al. E_cient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion", Journal of Physical Chemistry, 94(24), pp. 8634{8636 (1990). 55. Nechaev, Y.S. and Ol'ga, K.A. Methodological, applied and thermodynamic aspects of hydrogen sorption by graphite and related carbon nanostructures", Russian Chemical Reviews, 73(12), pp. 1211{1238 (2004). 56. Karpushenkava, L.S., Kabo, G.J., and Diky, V.V. Thermodynamic properties and hydrogen accumulation ability of fullerene hydride C60H36", Fullerenes, Nanotubes, and Carbon Nanostructures, 15(4), pp. 227{247 (2007). 57. Beardmore, K., Smith, R., Richter, A., et al. The interaction of hydrogen with C60 fullerenes", Journal of Physics: Condensed Matter, 6(36), p. 7351 (1994). 58. Bini, R., Ebenhoch, J., Fanti, M., et al. The vibrational spectroscopy of C60H36: An experimental and theoretical study", Chemical Physics, 232(1{2), pp. 75{94 (1998). 59. Popov, A.A., Senyavin, V.V., Granovsky, A.A., et al., Vibrational spectra and molecular structure of the hydrofullerenes C60H18, C60D18, and C60H36 as studied by IR and Raman spectroscopy and _rstprinciple calculations", in Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, Springer, pp. 347{356 (2004). 60. Bensasson, R.V., Hill, T.J., Land, E.J., et al. Spectroscopy and photophysics of C60H18 and C60H36", Chemical Physics, 215(1), pp. 111{123 (1997). 61. Meletov, K.P., Assimopoulos, S., Tsilika, I., et al. Isotopic and isomeric e_ects in high-pressure hydrogenated fullerenes studied by Raman spectroscopy", Chemical Physics, 263(2{3), pp. 379{388 (2001). 62. Balasubramanian, K. Enumeration of isomers of polysubstituted C60 and application to NMR", Chemical Physics Letters, 182(3{4), pp. 257{262 (1991). 63. Clare, B.W. and Kepert, D.L. Structures, stabilities and isomerism in C60Hn, n = 2 􀀀 36. A comparison of the AM1 Hamiltonian and density functional techniques", Journal of Molecular Structure: THEOCHEM, 622(3), pp. 185{202 (2003). 64. Nossal, J., Saini, R.K., Alemany, L.B., et al. The synthesis and characterization of fullerene hydrides", European Journal of Organic Chemistry, 2001(22), pp. 4167{4180 (2001). 1944 A. Golzari and H. Nejat Pishkenari/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 1933{1944 65. Brenner, D.W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond _lms", Physical Review B., 42(15), p. 9458 (1990). 66. Brenner, D.W., Shenderova, O.A., Harrison, J.A., et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons", Journal of Physics: Condensed Matter, 14(4), p. 783 (2002). 67. Stuart, S.J., Tutein, A.B., and Harrison, J.A. A reactive potential for hydrocarbons with intermolecular interactions", The Journal of Chemical Physics, 112(14), pp. 6472{6486 (2000). 68. Stephens, P.J., Devlin, F.J., Chabalowski, C.F.N., et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force _elds", The Journal of Physical Chemistry, 98(45), pp. 11623{11627 (1994). 69. Hehre, W.J., Ditch_eld, R., and Pople, J.A. Selfconsistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules", The Journal of Chemical Physics, 56(5), pp. 2257{2261 (1972). 70. Chase, B., Herron, N., and Holler, E. Vibrational spectroscopy of C60 and C70 temperature-dependent studies", Journal ofPhysical Chemistry, 96(11), pp. 4262{4266 (1992).