Multi-scale simulation of SU8 and SU8-graphene nanocomposites: Bridging atomistic to macroscale peridynamics

Document Type : Article


1 Department of Polymer Engineering, Nanostructured Materials Research Centre, Sahand University of Technology, Sahand New Town, Tabriz, Iran.

2 Department of Mechanical Engineering, Sahand University of Technology, Sahand New Town, Tabriz, Iran.

3 Department of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.


SU8 is commercial epoxy-Novolac resin, a negative tone photoresist with outstanding mechanical properties. Its nanocomposites have also been considered as a research material. In order to obtain insights about the SU8 nanocomposites with graphene the present work was conducted to simulate the mechanical properties using multiscale simulation method: atomistic, meso and macro scales. This has started from molecular dynamics, then moved to coarse grain and finally reached to macroscale. Peridynamics is the methodology which is governed throughout the work. Top-down and bottom-up loop has to be employed in order to confirm the total results. A tensile deformation is applied to a 2D plane at the upmost scale to result in an internal pressure. This is transferred to the lower scale in the next step as the external pressure. The procedure continues down until the molecular scale is reached. However, bottom-up strategy requires a bridging model to link the molecular scale to upper scales. The check point is the deformation values which have to be in the same order independent of top-down or bottom-up movement. At 2.1 wt.% of graphene in SU8, increased Young’s, bulk and shear modulus were calculated (62, 200, and 82 % respectively) compared to the neat SU8.


Main Subjects

1. Okada, A. and Usuki, A. Twenty years of polymer-clay nanocomposites", Macromol. Mater. Eng., 291(12), pp. 1449-1476 (2006). 2. Ray, S.S. and Okamoto, M. Polymer/layered silicate nanocomposites: a review from preparation to processing", Prog. Polym. Sci., 28(11), pp. 1539-1641 (2003). 3. Tjong, S.C. Structural and mechanical properties of 1970 F. Mohammadzadeh Honarvar et al./Scientia Iranica, Transactions F: Nanotechnology 26 (2019) 1962{1972 polymer nanocomposites", Mater. Sci. Eng. R Rep., 53(3), pp. 73-197 (2006). 4. Mehdikhani-Nahrkhalaji, M., Tavakoli, E., and Zargar-Kharazi, A. et al. A novel nano-composite sca_old for cartilage tissue engineering", Sci. Iran., 25(3), pp. 1815-1823 (2018). 5. Costanzo, F. and Gray, L.G. A micromechanicsbased notion of stress for use in the determination of continuum-level mechanical properties via molecular dynamics", In Multiscale Modeling and Simulation of Composite Materials and Structures, Y.W. Kwon, D.H. Allen, and R. Talreja, Eds., 1st Edn, pp. 203-235, Springer, New York, USA (2008). 6. Zeng, Q., Yu, A., and Lu, G. Multiscale modeling and simulation of polymer nanocomposites", Prog. Polym. Sci., 33(2), pp. 191-269 (2008). 7. Zeng, Q., Yu, A., Lu, G., et al. Clay-based polymer nanocomposites: research and commercial development", J. Nanosci. Nanotechnol., 5(10), pp. 1574-1592 (2005). 8. Zeng, Q., Yu, A., and Lu, G.M. Interfacial interactions and structure of polyurethane intercalated nanocomposite", Nanotechnology, 16(12), pp. 2757- 2763 (2005). 9. Gates, T., Odegard, G., and Frankland, S. et al. Computational materials: multi-scale modeling and simulation of nanostructured materials", Compos. Sci. Technol., 65(15), pp. 2416-2434 (2005). 10. Smith, J., Bedrov, D., Borodin, O., et al. Multiscale modeling of polymer based nanomaterials", NSTI Nanotech., Boston, USA, pp. 724-727 (2006). 11. Yan, L.-T., and Xie, X.-M. Computational modeling and simulation of nanoparticle self-assembly in polymeric systems: Structures, properties and external _eld e_ects", Prog. Polym. Sci., 38(2), pp. 369-405 (2013). 12. Efendiev, Y. and Hou, T.Y. Applications of multiscale _nite element methods", In Multiscale Finite Element Methods: Theory and Applications, S.S. Antman, J.E. Marsden, and L. Sirovich, Eds., 1st Edn, pp. 95-163, Springer, New York, USA (2009). 13. Smith, G.D., Bedrov, D., Li, L., et al. A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites", J. Chem. Phys., 117(20), pp. 9478-9489 (2002). 14. Carter, E.A. Challenges in modeling materials properties without experimental input", Science, 321(5890), pp. 800-803 (2008). 15. Elliott, J. Novel approaches to multiscale modelling in materials science", Int. Mater. Rev., 56(4), pp. 207- 225 (2011). 16. Harmandaris, V.A., Floudas, G., and Kremer, K. Temperature and pressure dependence of polystyrene dynamics through molecular dynamics simulations and experiments", Macromolecules, 44(2), pp. 393-402 (2010). 17. Schneider, G., Nusser, K., Willner, L., et al. Dynamics of entangled chains in polymer nanocomposites", Macromolecules, 44(15), pp. 5857-5860 (2011). 18. Valavala, P. and Odegard. G. Modeling techniques for determination of mechanical properties of polymer nanocomposites", Rev. Adv. Mater. Sci., 9, pp. 34-44 (2005). 19. Baghani, M., Dolatabadi, R., and Baniassadi, M. Developing a _nite element beam theory for nanocomposite shape-memory polymers with application to sustained release of drugs", Sci. Iran., Trans. B., 24(1), pp. 249-259 (2017). 20. Hamlett, C.A.E., McHale, G., and Newton, M.I. Lithographically fabricated SU8 composite structures for wettability control", Surf. Coat. Technol., 240, pp. 179-183 (2014). 21. Blagoi, G., Keller, S., Persson F., et al. Photochemical modi_cation and patterning of SU-8 using anthraquinone photolinkers", Langmuir, 24(18), pp. 9929-9932 (2008). 22. Rodr__guez-Ruiz, I., Llobera, A., Vila-Planas, J., et al. Analysis of the structural integrity of SU-8-based optouidic systems for small-molecule crystallization studies", Anal. Chem., 85(20), pp. 9678-9685 (2013). 23. Hu, M., Guo, Q., Zhang, T., et al. SU-8-induced strong bonding of polymer ligands to exible substrates via in situ cross-linked reaction for improved surface metallization and fast fabrication of highquality exible circuits", ACS Appl. Mater. Inter., 8(7), pp. 4280-4286 (2016). 24. Romeo, A., Liu, Q., Suo, Z., et al. Elastomeric substrates with embedded sti_ platforms for stretchable electronics", Appl. Phys. Lett., 102(13), p. 131904 (2013). 25. Rahiminejad, S., Pucci, E., Haasl, S., et al. SU8 ridgegap waveguide resonator", Int. J. Microw. Wirel. T., 6(05), pp. 459-465 (2014). 26. Nagaiyanallur, V.V., Kumar, D., Rossi, A., et al. Tailoring SU-8 surfaces: covalent attachment of polymers by means of nitrene insertion", Langmuir, 30(3), pp. 10107-10111 (2014). 27. Tian, Y., Shang, X., Wang, Y., et al. Investigation of SU8 as a structural material for fabricating passive millimeter-wave and terahertz components", J. Micro/ Nanolithogr. MEMS. MOEMS., 14(4), pp. 044507- 044509 (2015). 28. Mehboudi A. and Yeom, J. A two-step sealing-andreinforcement SU8 bonding paradigm for the fabrication of shallow microchannels", J. Micromech. Microeng., 28(3), p. 035002 (2018). 29. Wu, C, and Xu, W. Atomistic molecular simulations of structure and dynamics of crosslinked epoxy resin", Polymer, 48(19), pp. 5802-5812 (2007). 30. Wu, C. and Xu, W. Atomistic molecular modelling of crosslinked epoxy resin", Polymer, 47(16), pp. 6004- 6009 (2006). F. Mohammadzadeh Honarvar et al./Scientia Iranica, Transactions F: Nanotechnology 26 (2019) 1962{1972 1971 31. Ansari, R., Ajori, S., and Motevalli, B. Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation", Superlattices Microstruct., 51(2), pp. 274-289 (2012). 32. Ebrahimi, S., Ghafoori-Tabrizi, K., and Ra_i-Tabar, H. Multi-scale computational modelling of the mechanical behaviour of the chitosan biological polymer embedded with graphene and carbon nanotube", Comp. Mater. Sci., 53(1), pp. 347-353 (2012). 33. Rissanou, A.N. and Harmandaris, V. Structure and dynamics of poly (methyl methacrylate)/graphene systems through atomistic molecular dynamics simulations", J. Nanopart. Res., 15(5), p. 1589 (2013). 34. Rissanou, A.N. and Harmandaris, V. Dynamics of various polymer-graphene interfacial systems through atomistic molecular dynamics simulations", Soft Matter, 10(16), pp. 2876-2888 (2014). 35. Rahman, R. and Haque, A. Molecular modeling of crosslinked graphene-epoxy nanocomposites for characterization of elastic constants and interfacial properties", Compos. Part B-Eng., 54, pp. 353-364 (2013). 36. Alian, A., Dewapriya, M., and Meguid, S. Molecular dynamics study of the reinforcement e_ect of graphene in multilayered polymer nanocomposites", Mater. Design, 124, pp. 47-57 (2017). 37. Guryel, S., Walker, M., Geerlings, P., et al. Molecular dynamics simulations of the structure and the morphology of graphene/polymer nanocomposites", Phys. Chem. Chem. Phys., 19(20), pp. 12959-12969 (2017). 38. Sun, R., Li, L., and Feng, C. et al. Tensile behavior of polymer nanocomposite reinforced with graphene containing defects", Eur. Polym. J., 98, pp. 475-482 (2018). 39. Yu, S., Yang, S., and Cho, M. Multi-scale modeling of cross-linked epoxy nanocomposites", Polymer, 50(3), pp. 945-952 (2009). 40. Yu, S., Yang, S., and Cho, M. Multiscale modeling of cross-linked epoxy nanocomposites to characterize the e_ect of particle size on thermal conductivity", J. Appl. Phys., 110(12), p. 124302 (2011). 41. Rahman, R. and Haque, A. A peridynamics formulation based hierarchical multiscale modeling approach between continuum scale and atomistic scale", Int. J. Comput. Mater. Sci. Eng., 1(03), p. 1250029 (2012). 42. Kim, B., Choi, J., Yang, S., et al. Multiscale modeling of interphase in crosslinked epoxy nanocomposites", Composites, Part B, 120, pp. 128-142 (2017). 43. Lin, F., Yang, C., Zeng, Q., et al. Morphological and mechanical properties of graphene-reinforced PMMA nanocomposites using a multiscale analysis", Comput. Mater. Sci., 150, pp. 107-120 (2018). 44. Tam, L.-h. and Lau, D. A molecular dynamics investigation on the cross-linking and physical properties of epoxy-based materials", RSC Adv., 4(62), pp. 33074- 33081 (2014). 45. Tam, L.-H. and Lau, D. Moisture e_ect on the mechanical and interfacial properties of epoxy-bonded material system: An atomistic and experimental investigation", Polymer, 57, pp. 132-142 (2015). 46. Parks, M.L., Seleson, P., Plimpton, S.J., et al. Peridynamics with LAMMPS: A user guide, v0. 3 Beta", Sandia Report (2011-8253), pp. 1-34 (2011). 47. Parks, M.L., Lehoucq, R.B., Plimpton, S.J., et al. Implementing peridynamics within a molecular dynamics code", Comput. Phys. Commun., 179(11), pp. 777-783 (2008). 48. Plimpton, S., Crozier, P., and Thompson, A. LAMMPS-large-scale atomic/molecular massively parallel simulator", Sandia National Laboratories, 18, p. 43 (2007). 49. Zhang, J., Chan-Park, M.B., and Li, C.M. Network properties and acid degradability of epoxy-based SU- 8 resists containing reactive gamma-butyrolactone", Sensor. Actuat. B-Chem., 131(2), pp. 609-620 (2008). 50. Mohammadzadeh Honarvar, F., Pourabbas, B., Salami Hosseini, M., et al. Molecular dynamics simulation: The e_ect of graphene on the mechanical properties of epoxy based photoresist: SU8", Sci. Iran., 25(3). pp. 1879-1890 (2018). 51. Hossenlopp, J., Jiang, L., Cernosek, R., et al. Characterization of epoxy resin (SU-8) _lm using thicknessshear mode (TSM) resonator under various conditions", J. Polym. Sci. Pol. Phys., 42(12), pp. 2373- 2384 (2004). 52. Suter, M., Ergeneman, O., Zurcher, J., et al. A photopatternable superparamagnetic nanocomposite: Material characterization and fabrication of microstructures", Sensor. Actuat. B-Chem., 156(1), pp. 433-443 (2011). 53. Theodorou, D.N. and Suter, U.W. Atomistic modeling of mechanical properties of polymeric glasses", Macromolecules, 19(1), pp. 139-154 (1986).