Numerical study of insulation structure characteristics and arrangement effects on cell trapping using alternative current insulating based dielectrophoresis

Document Type : Article

Authors

1 Small Medical Devices, BioMEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Postal Code 14399-55961, Iran

2 a. Small Medical Devices, BioMEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Postal Code 14399-55961, Iran b. Department of Mechanical Engineering, College of Engineering, Michigan State University, MI, USA

Abstract

Insulator-based dielectrophoresis is a recently developed technique in which insulating posts are used to produce non-uniformity in the electric field in a microchannel. This study presents the effects of insulating posts geometry and arrangement on the trapping efficiency of red blood cells in an alternating current- Insulator-based dielectrophoresis system. Microchannels containing square, circular and diamond-shaped posts with particles under the influence of positive dielectrophoresis force and fluid flow were considered. Finite element method was used to compute the velocity of the flow and electric field. The numerical method was verified by comparing the numerical results with experimental data. Two distinct criteria for examining particle trapping for distinct shapes and arrangements of insulating posts were introduced. Particle tracing simulation was implemented to observe particle trapping and compare the trapping performance of systems with distinct posts. As shown in the results for the system with circular and square posts, insulators should be narrowed to improve particle trapping, while diamond post should be widened to increase the trapping efficiency. In addition, the particle tracing results showed that microchannel with square posts is more efficient in particle trapping.

Keywords

Main Subjects


1. C_ etin, B. and Li, D. Dielectrophoresis in microuidics  technology", Electrophoresis, 32(18), pp. 2410{2427  (2011).  2. Gagnon, Z., Senapati, S., Gordon, J., et al. Dielectrophoretic  detection and quanti_cation of hybridized  DNA molecules on nano-genetic particles",  Electrophoresis, 29(24), pp. 4808{4812 (2008).  3. Pethig, R. Dielectrophoresis: Status of the theory,  technology, applications", Biomicrouidics, 4(2), pp.  510{713 (2010).  4. Whitesides, G. The origins and the future of microuidics",  Nature, 4427101July, pp. 0028{0836 (2006).  5. Clark, I.C., Thakur, R., and Abate, A.R. Concentric  electrodes improve microuidic droplet sorting", Lab  on a Chip, 18(5), pp. 710{713 (2018).  6. Xuan, X., and Qian, S., Micro/Nano-Chip Electrokinetics,  MDPI (2018).  7. Waheed, W., Alazzam, A., Mathew, B., et al. Lateral  uid ow fractionation using dielectrophoresis (LFFFDEP)  for size-independent, label-free isolation of circulating  tumor cells", Journal of Chromatography B,  1087, pp. 133{137 (2018).  8. Flanagan, L.A., Lu, J., Wang, L., et al. Unique  dielectric properties distinguish stem cells and their  di_erentiated progeny", Stem Cells, 26(3), pp. 656{  665 (2008).  9. Gagnon, Z.R. Cellular dielectrophoresis: applications  to the characterization, manipulation, separation and  patterning of cells", Electrophoresis, 32(18), pp. 2466{  2487 (2011).  10. Jones, T.B. and Jones, T.B., Electromechanics of  Particles, Cambridge University Press (2005).  11. Choi, S., Ko, K., Lim, J., et al. Non-linear cellular dielectrophoretic  behavior characterization using dielectrophoretic  tweezers-based force spectroscopy inside a  microuidic device", Sensors, 18(10), p. 3543 (2018).  12. Chen, X., Liang, Z., Li, D., et al. Microuidic dielectrophoresis  device for trapping, counting and detecting  Shewanella oneidensis at the cell level", Biosensors and  Bioelectronics, 99, pp. 416{423 (2018).  13. Sato, N., Yao, J., Sugawara, M., et al. Numerical  study of particle-uid ow under AC electrokinetics  in electrode-multilayered microuidic device", IEEE  Transactions on Biomedical Engineering, 66(2), pp.  453{463 (2018).  14. Zhang, J., Yuan, D., Zhao, Q., et al. Tunable particle  separation in a hybrid dielectrophoresis (DEP)-inertial  microuidic device", Sensors and Actuators B: Chemical,  267, pp. 14{25 (2018).  15. Moncada-Hern_andez, H. and Lapizco-Encinas, B.H.  Simultaneous concentration and separation of microorganisms:  insulator-based dielectrophoretic approach",  Anal. Bioanal. Chem., 396(5), pp. 1805{1816  (2010).  16. Alazzam, A., Mathew, B., and Alhammadi, F. Novel  microuidic device for the continuous separation of  cancer cells using dielectrophoresis", J. Sep. Sci.,  40(5), pp. 1193{1200 (2017).  R. Javidi et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 1302{1312 1311  17. Cummings, E.B. and Singh, A.K. Dielectrophoresis  in microchips containing arrays of insulating posts:  theoretical and experimental results", Anal. Chem.,  75(18), pp. 4724{4731 (2003).  18. Lapizco-Encinas, B.H., Simmons, B.A., Cummings,  E.B., et al. Insulator-based dielectrophoresis for the  selective concentration and separation of live bacteria  in water", Electrophoresis, 25(10-11), pp. 1695{1704  (2004).  19. Aghaamoo, M., Aghilinejad, A., and Chen, X.  Numerical study of insulator-based dielectrophoresis  method for circulating tumor cell separation, Micro  uidics, BioMEMS, and Medical Microsystems XV,  10061, International Society for Optics and Photonics  (2017).  20. Regtmeier, J., Kasewieter, J., Everwand, M., et al.  Continuous-ow separation nanoparticles by electrostatic  sieving at micro-nanouidic interface", J. Sep.  Sci., 34(10), pp. 1180{1183 (2011).  21. Zellner, P., Shake, T., Sahari, A., et al. O_-chip  passivated-electrode, insulator-based dielectrophoresis  (O-DEP)", Anal. Bioanal. Chem., 405(21), pp. 6657{  6666 (2013).  22. Gallo-Villanueva, R.C., P_erez-Gonz_alez, V.H., Davalos,  R.V., et al. Separation of mixtures of particles  in a multipart microdevice employing insulator-based  dielectrophoresis", Electrophoresis, 32(18), pp. 2456{  2465 (2011).  23. Moncada-Hernandez, H., Baylon-Cardiel, J.L., P_erez-  Gonz_alez, V.H., et al. Insulator-based dielectrophoresis  of microorganisms: Theoretical and experimental  results", Electrophoresis, 32(18), pp. 2502{2511  (2011).  24. Kwon, J.-S., Maeng, J.-S., Chun, M.-S., et al.  Improvement of microchannel geometry subject to  electrokinesis and dielectrophoresis numerical simulations",  Microuid. Nanouid., 5(1), pp. 23{31 (2008).  25. Saucedo-Espinosa, M.A., and Lapizco-Encinas, B.H.  Experimental and theoretical study of dielectrophoretic  particle trapping in arrays of insulating  structures: E_ect of particle size and shape", Electrophoresis,  36(9-10), pp. 1086{1097 (2015).  26. Pesch, G.R., Kiewidt, L., Du, F., et al. Electrodeless  dielectrophoresis: Impact of geometry and material on  obstacle polarization", Electrophoresis, 37(2), pp. 291{  301 (2016).  27. LaLonde, A., Gencoglu, A., Romero-Creel, M.F., et al.  E_ect of insulating posts geometry on particle manipulation  in insulator based dielectrophoretic devices", J.  Chromatogr. A, 1344, pp. 99{108 (2014).  28. Mohammadi, M., Zare, M.J., Madadi, H., et al. A  new approach to design an e_cient micropost array  for enhanced direct-current insulator-based dielectrophoretic  trapping", Anal. Bioanal. Chem., 408(19),  pp. 5285{5294 (2016).  29. Sha_ee, H., Sano, M.B., Henslee, E.A., et al. Selective  isolation of live/dead cells using contactless dielectrophoresis  (cDEP)", Lab Chip, 10(4), pp. 438{445  (2010).  30. Salmanzadeh, A., Romero, L., Sha_ee, H., et al.  Isolatio of prostate tumor initiating cells through  their dielectrophoretic signature", Lab Chip, 12(1), pp.  182{189 (2012).  31. Zellner, P., Shake, T., Hosseini, Y., et al. 3D  Insulator-based dielectrophoresis using DC-biased, AC  electric _elds for selective bacterial trapping", Electrophoresis,  36(2), pp. 277{283 (2015).  32. Cristofanilli, M., Krishnamurthy, S., Das, C.M., et al.  Dielectric cell separation of _ne needle aspirates from  tumor xenografts", J. Sep. Sci., 31(21), pp. 3732{3739  (2008).  33. Sano, M.B., Gallo-Villanueva, R.C., Lapizco-Encinas,  B.H., et al. Simultaneous electro kinetic ow and  dielectrophoretic trapping using perpendicular static  and dynamic electric _elds", Microuid. Nanouid.,  15(5), pp. 599{609 (2013).  34. Martinez-Duarte, R., Camacho-Alanis, F., Renaud,  P., et al. Dielectrophoresis of lambda-DNA using 3D  carbon electrodes", Electrophoresis, 34(7), pp. 1113{  1122 (2013).  35. Demierre, N., Braschler, T., Muller, R., et al. Focusing  and continuous separation cells in micro uidic  device using lateral dielectrophoresis", Sensors and  Actuators B: Chemical, 132(2), pp. 388{396 (2008).  36. Shamloo, A. and Kamali, A. Numerical analysis of  a dielectrophoresis _eld-ow fractionation device for  the separation of multiple cell types", Journal of  Separation Science, 40(20), pp. 4067{4075 (2017).  37. Saucedo-Espinosa, M.A., LaLonde, A., Gencoglu, A.,  et al. Dielectrophoretic manipulation of particle mixtures  employing asymmetric insulating posts", Electrophoresis,  37(2), pp. 282{290 (2016).  38. Demierre, N., Braschler, T., Linderholm, P., et al.  Characterization and optimization of liquid electrodes  for lateral dielectrophoresis", Lab Chip, 7(3),  pp. 355{365 (2007).  39. C_ etin, B.,  Oner, S.D., and Barano_glu, B. Modeling  of dielectrophoretic particle motion: Point particle  versus _nite-sized particle", Electrophoresis, 38(11),  pp. 1407{1418 (2017).  40. Mathew, B., Alazzam, A., Abutayeh, M., et al.  Model-based analysis of a dielectrophoretic microuidic  device for _eld-ow fractionation", J. Sep. Sci.,  39(15), pp. 3028{3036 (2016).