Optimal tuner selection using Kalman filter for a real-time modular gas turbine model

Document Type : Research Note

Authors

Department of Mechanical Engineering, Sharif University of Technology (SUT), Tehran, P.O. Box 11155-9567, Iran

Abstract

In this study, a real-time flexible modular modeling approach for the simulation of gas turbine engines dynamic behavior based on nonlinear thermodynamic and dynamic laws is addressed. The introduced model, which is developed in Matlab-Simulink environment, is an object-oriented high speed real-time computer model and is capable of simulating the dynamic behavior of a broad group of gas turbine engines due to its modular structure. Moreover, a Kalman filter-based model tuning procedure is applied to decrease the modeling errors. Modeling errors are defined as the mismatch between simulation results and available experimental data. This tuning procedure is an underdetermined estimation problem, where there are more tuning parameters than available measured data. Here, an innovative approach to produce a tuning parameter vector is introduced. This approach is based on seeking an optimal initial value for the Kalman filter tuning procedure. Three simulation studies are carried out in this paper to demonstrate the advantages, capabilities and performance of the proposed scheme. Furthermore, simulation results are compared with manufacturer’s published data, and with the experimental results gathered in either turbo-generator or turbo-compressor applications. Computational time requirement of the model is discussed at the end of the paper.

Keywords

Main Subjects


References
1. Cohen, H., Rogers, G.F.C., and Saravanamuttoo,
H.I.H., Gas Turbine Theory, 4th Edn., AddisonWesley
Longman, Harlow, UK (1996).
2. Evans, C., Rees, D., and Borrell, A. Identi cation of
aircraft gas turbine dynamics using frequency-domain
techniques", J. Control Eng. Practice, 8(4), pp. 457{
467 (2000).
3. Asgari, H., Venturini, M., Chen, X., et al. Modeling
and simulation of the transient behavior of an industrial
power plant gas turbine", ASME J. Eng. Gas
Turbines Power, 136(6), pp. 061601{10 (2014).
4. Hosseini, S.M., Fatehi, A., Khaki Sedigh, A., et al.
Automatic model bank selection in multiple model
identi cation of gas turbine dynamics", J. Syst. Control
Eng., 227(5), pp. 482{494 (2013).
5. Asgari, H., Venturini, M., Chen, X., et al. Modeling
and simulation of the transient behavior of an industrial
power plant gas turbine", ASME J. Eng. Gas
Turbines Power, 136(6), p. 061601 (2014).
6. Asgari, H., Chen, X., Morini, M., et al. NARX models
for simulation of the start-up operation of a singleshaft
gas turbine", Applied Thermal Engineering, 93,
pp. 368{376 (2016).
7. Benyounes, A., Hafaifa, A., Kouzou, A., et al. Gas
turbine modeling using adaptive fuzzy neural network
approach based on measured data classi cation",
Mathematics-in-Industry Case Studies, 7(1), pp. 4{18
(2017).
8. Mohammadi, E. and Montazeri-Gh, M. A new approach
to the gray-box identi cation of wiener models
with the application of gas turbine engine modeling",
ASME J. Eng. Gas Turbines Power, 137(7), p. 071202
(2015).
9. Bahrami, S., Gha ari, A., Sadati, S.H., et al. Identifying
a simpli ed model for heavy duty gas turbine",
J. Mech. Science Tech., 28(6), pp. 2399{2408 (2014).
10. Razak, A.M., Industrial Gas Turbines, Performance
and Operability, Woodhead Publishing, London, UK
(2007).
11. Cao, Y., Jin, X., Meng, G., et al. Computational
modular model library of gas turbine", J. Adv. In Eng.
Software, 36(2), pp. 127{134 (2005).
12. Schobeiri, T., Attia, M., and Lippke, C. GETRAN:
A generic, modularly structured computer code for
simulation of dynamic behavior of aero-and power
generation gas turbine engines", ASME J. Eng. Gas
Turbines Power, 116(3), pp. 483{494 (1994).
13. Panov, V. GasTurboLib: Simulink library for gas
turbine engine modelling", In ASME Turbo Expo,
Orlando, Florida USA, pp. 555{565 (2009).
14. Bianchi, M., Peretto, A., and Spina, P.R. Modular
dynamic model of multi-shaft gas turbine and validation
test", In Proc. Winter Annual Meeting of ASME,
38, AES, Anaheim, Calif, USA, pp. 73{81 (1998).
15. Chacartegui, R., Sanchez, D., Munoz, A., et al. Real
time simulation of medium size gas turbines", J.
Energy Conversion and Management, 52(1), pp. 713{
724 (2011).
16. Camporeale, S.M., Fortunato, B., and Mastrovito, M.
A modular code for real time dynamic simulation of
gas turbines in Simulink", ASME J. Eng. Gas Turbines
Power, 128(3), pp. 506{517 (2006).
17. Mohammadi, Z. and Salarieh, H. Parameter identi -
cation of a parametrically excited rate micro-gyroscope
using recursive least squares method", Scientia Iranica,
Transaction B, Mechanical Engineering, 24(4),
pp. 1889{1900 (2017).
18. Kiani, M. and Pourtakdoust, S.H. Spacecraft attitude
and system identi cation via marginal modi ed unscented
Kalman lter utilizing the sun and calibrated
three-axis-magnetometer sensors", Scientia Iranica,
Transaction B, Mechanical Engineering, 21(4), pp.
1451{1460 (2014).
19. Panov, V. Auto-tuning of real-time dynamic gas
turbine models", In ASME Turbo Expo, Dusseldorf,
Germany, p. V006T06A004 (2014).
20. Chaibakhsh, A. and Amirkhani, S. A simulation
model for transient behavior of heavy-duty gas turbines",
Applied Thermal Engineering, 132, pp. 115{
127 (2018).
21. Simon, D., Optimal State Estimation, Kalman, H1,
and Nonlinear Approaches, John Wiley & Sons, Inc.,
Hoboken, NJ (2006).
818 R. Sheikhbahaei et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 806{818
22. Litt, J.S. An optimal orthogonal decomposition
method for Kalman lter-based turbofan engine thrust
estimation", ASME J. Eng. Gas Turbines Power,
130(1), 011601{1 (2008).
23. Simon, D.L. and Garg, S. Optimal tuner selection
for Kalman lter-based aircraft engine performance
estimation", ASME J. Eng. Gas Turbines Power,
132(3), 031601{1 (2010).
24. Siemens, SGT-600 Industrial Gas Turbine, Siemens
Industrial Turbomachinery, Inc., Duisburg, Germany
(2005).
25. Strand, T., Industrial Gas Turbine Control, Siemens
Power Generation, Siemens AG, Erlangen, Germany
(2006).
26. Mackenzie, F.T., Our Changing Planet: An Introduction
to Earth System Science and Global Environmental
Change, 3rd Ed., Prentice Hall, NY, USA (2003).
27. Patai S. and Rappoport, Z., The Chemistry of Alkanes
and Cycloalkanes, Wiley & Sons, Chichester, UK
(1992).
28. Kee, R.J., Rupley, F.M., and Miller, J.A., The
Chemkin Thermodynamic Database, SAND87-8215B,
UC-4, Sandia National Laboratories (1987).
29. Fielding, D. and Topps, J.E.C., Thermodynamic Data
for the Calculation of Gas Turbine Performance, Aeronautical
Research Council, R&M, No. 3099 (1959).
30. El-Masri, M.A. GASCAN-An interactive code for
thermal analysis of gas turbine systems", ASME J.
Eng. Gas Turbines Power, 110(2), pp. 201{209 (1988).
31. Tabari, A., Khaledi, H., and Hajilouy Benisi, A. Comparative
evaluation of advanced gas turbine cycles with
modi ed blade cooling models", In ASME Turbo Expo,
Barcelona, Spain, pp. 537{546 (2006).
32. Rowen, W. Simpli ed mathematical representations
of heavy duty gas turbines", ASME J. Eng. Gas
Turbines Power, 105(4), pp. 865{869 (1983).
33. SGT-600 Industrial gas turbine (power generation)
published data, accessed at 2018, July 22, Retrieved
from http://www.energy.siemens.com/ru/pool/hq/
power-generation/ gas-turbines/SGT-600/downloads/
SGT-600 GT PowerGen EN.pdf
34. Rey OCGT Power Plant, accessed at 2018 July
22, Retrieved from http://globalenergyobservatory.
org/geoid/45024
35. Neyzar Natural Gas Compressor Station, accessed
at 2018 July 22, Retrieved from http://tcproject.
nigc.ir/Portal/Home/ShowPage.aspx?Object=NEWS
&CategoryID=21d 668-6bec-4fd1-8430-81a194b7d9e2
&WebPartID=893aaf0b-0d62-4c3b-82bf-55098c09e804
&ID=47a415c7-908a-4297-ba13-cb8c7ca9ca8c