Numerical simulation of a novel Trombe wall-assisted desiccant wheel

Document Type: Article

Authors

1 Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran

3 Department of Petroleum and Gas Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

In the present study, a novel trombe wall-assisted desiccant wheel system has been modeled, in which the trombe wall is divided into three equal parts and it provides the heat energy needed to regenerate the desiccant wheel. The components of the system, including the desiccant wheel, the trombe wall are separately modeled in MATLAB software and then assembled to investigate the surface area of the trombe wall and the output humidity of the desiccant wheel for attaining air conditioning comfort. It has been discussed that the integrated system presented here, can be utilized in all humid climate conditions around the globe. The results of the present study for some special cases have been compared with results available in open literature. The optimal surface area of the trombe wall has been extracted according to the parameters of the desiccant wheel. Results shows that the solar energy received by the trombe wall is 600-740 W/m2 (1May – 15August) in warm and humid climate of Gilan (Iran), the temperature of the wall surface is obtained 77-86 ºC, and the outlet temperature of regeneration air stream from trombe wall is obtained 60-70 ºC, the output humidity of the desiccant wheel reduces 10-12 gw/kga.

Keywords

Main Subjects