Document Type : Article

**Authors**

Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, P.O. Box 8731753153, Iran

**Abstract**

The linear switched reluctance machine (LSRM) has all advantages of rotary switched reluctance machine including simple and rugged structure, absence of magnetic material and windings on translator, high reliability and appropriate performance over a wide range of speed. Like rotary switched reluctance motor with segmental rotor, segmental translator linear switched reluctance motor (STLSRM) has capability to produce higher output power/weight in comparison to the conventional linear switched reluctance motors. Due to high advantages of the STLSRM drive, various control algorithms including current control, model predictive control, direct force control, universal control and force distribution function are investigated for the first time to control the instantaneous thrust of this motor. Applying these algorithms to a typical three-phase STLSRM, simulation results are presented and they are compared together from the force ripple reduction point of view.

**Keywords**

**Main Subjects**

1. Todd, R., Valdivia, V., Bryan, F.J., et al. Behavioural

modelling of a switched reluctance motor drive for

aircraft power systems", IET Electr. Syst. Transp.,

4(4), pp. 107{113 (2014).

2. Zhu, J., Cheng, K.W.E., Xue, X., et al. Design of

a new enhanced torque in-wheel switched reluctance

motor with divided teeth for electric vehicles", IEEE

Trans. Magn., 53(11), 2501504 (2017).

3. Mishra, A.K. and Singh, B. Solar photovoltaic array

dependent dual output converter based water pumping

using switched reluctance motor drive", IEEE Trans.

Ind. Appl., 53(6), pp. 5615{5623 (2017).

4. Wang, D., Wang, X., and Du, X.F. Design and

comparison of a high force density dual-side linear

switched reluctance motor for long rail propulsion

application with low cost", IEEE Trans. Magn., 53(6),

7207204 (2017).

5. Sahin, C., Amac, A.E., Karacor, M., et al. Reducing

torque ripple of switched reluctance machines by relocation

of rotor moulding clinches", IET Electr. Power

Appl., 6(9), pp. 753{760 (2012).

6. Ma, C. and Qu, L. Multiobjective optimization of

switched reluctance motors based on design of experiments

and particle swarm optimization", IEEE Trans.

Energy Convers., 30(3), pp. 1144{1153 (2015).

7. Ye, J., Bilgin, B., and Emadi, A. An oine torque

sharing function for torque ripple reduction in switched

reluctance motor drives", IEEE Trans. Energy Convers.,

30(2), pp. 726{735 (2015).

8. Deng, X., Mecrow, B., Wu, H., et al. Design and

development of low torque ripple variable-speed drive

system with six-phase switched reluctance motors",

IEEE Trans. Energy Convers., 33(1), pp. 420{429

(2018).

9. Bae, H.K., Lee, B.S., Vijayraghavan, P., et al. A linear

switched reluctance motor: converter and control",

IEEE Trans. Ind. Appl., 36(5), pp. 1351{1359 (2000).

10. Gan, W.C., Cheung, N.C., and Qiu, L. Position

control of linear switched reluctance motors for

high-precision applications", IEEE Trans. Ind. Appl.,

39(5), pp. 1350{1362 (2003).

11. Lim, H.S. and Krishnan, R. Ropeless elevator with

linear switched reluctance motor drive actuation systems",

IEEE Trans. Ind. Electron., 54(4), pp. 2209{

2218 (2007).

12. Zhao, S.W., Cheung, N.C., Gan, W.C., et al.

Passivity-based control of linear switched reluctance

motors with robustness consideration", IET Electr.

Power Appl., 2(3), pp. 164{171 (2008).

13. Lim, H.S., Krishnan, R., and Lobo, N.S. Design and

control of a linear propulsion system for an elevator

using linear switched reluctance motor drives", IEEE

Trans. Ind. Electron., 55(2), pp. 534{542 (2008).

14. Zhao, S.W., Cheung, N.C., Gan, W.C., et al. Highprecision

position control of a linear-switched reluctance

motor using a self-tuning regulator", IEEE

Trans. Power Electron., 25(11), pp. 2820{2827 (2010).

15. Pan, J.F., Cheung, N.C., and Zou, Y. An improved

force distribution function for linear switched

reluctance motor on force ripple minimization with

nonlinear inductance modeling", IEEE Trans. Magn.,

48(11), pp. 3064{3067 (2012).

16. Pan, J.F., Zou, Y., and Cao, G. Adaptive controller

for the double-sided linear switched reluctance motor

based on the nonlinear inductance modeling", IET

Electr. Power Appl., 7(1), pp. 1{15 (2013).

17. Masoudi, S., Feyzi, M.R., and Sharian, M.B. Force

ripple and jerk minimisation in double sided linear

switched reluctance motor used in elevator application",

IET Electr. Power Appl., 10(6), pp. 508{516

(2016).

18. Ganji, B. and Askari, M.H. Analysis and modeling

of dierent topologies for linear switched reluctance

motor using nite element method", Alexandria Engineering

Journal, 55, pp. 2531{2538 (2016).

19. Wang, D., Du, X., Zhang, D., et al. Design, optimization,

and prototyping of segmental-type linear

switched-reluctance motor with a toroidally wound

mover for vertical propulsion application", IEEE

Trans. Ind. Electron., 65(2), pp. 1865{1874 (2018).

20. Krishnan, R. Switched reluctance motor drives: modeling,

simulation, analysis, design, and applications",

CRC press (2001).

21. Vijayakumar, K., Karthikeyan, R., Paramasivam, S.,

et al. Switched reluctance motor modeling, design,

simulation, and analysis: a comprehensive review",

IEEE Trans. Magn., 44(12), pp. 4605{4817 (2008).

22. Cao, G., Chen, N., Huang, S., Xiao, S., and He, J.

Nonlinear modeling of the

ux linkage in 2-D plane for

the planar switched reluctance motor", IEEE Trans.

Magn., 54(11), Article no. 8206605 (2018).

23. Cao, G., Li, L., Huang, S., et al. Nonlinear modeling

of electromagnetic forces for the planar switched reluctance

motor", IEEE Trans. Magn., 51(11), 8206605

(2015).

A. Zare Chavoshi and B. Ganji/Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3140{3149 3149

24. Arehpanahi, M. and Sanaei, V. Optimal design of

interior permanent magnet motor with wide

ux weakening

range", Scientia Iranica, 22(3), pp. 1045{1051

(2015).

25. Arehpanahi, M. and Kashe, H. Cogging torque

reduction of interior permanent magnet synchronous

motor (IPMSM)", Scientia Iranica, 25(3), pp. 1471{

1477 (2018).

26. Cheok, D. and Fukuda, Y. A new torque and

ux

control method for switched reluctance motor drives",

IEEE Trans. Power Electron., 17(4), pp. 543{557

(2002).

27. Mikail, R., Husain, I., Sozer, Y., et al., Torque ripple

minimization of switched reluctance machines through

current proling", IEEE Trans. Ind. Appl., 49(3), pp.

1258{1267 (2013).

28. Shao, B. and Emadi, A. A digital PWM control

for switched reluctance motor drives", IEEE Vehicle

Power and Propulsion Conference, Lille, France, pp.

1{6 (2010).

29. Ruiwei, Z., Xisen, Q., Liping, J., et al. An adaptive

sliding mode current control for switched reluctance

motor", IEEE Conference and Expo Transportation

Electrication Asia-Pacic (ITEC Asia-Pacic), Beijing,

country, pp. 1{6 (2014).

30. Schulz, S.E. and Rahman, K.M. High-performance

digital PI current regulator for EV switched reluctance

motor drives", IEEE Trans. Ind. Appl., 39(4), pp.

1118{1126 (2003).

31. Lin, Z., Reay, D., Williams, B., et al. Highperformance

current control for switched reluctance

motors based on on-line estimated parameters", IET

Electr. Power Appl., 4(1), pp. 67{74 (2010).

32. Ahmad, S.S. and Narayanan, G. Linearized modeling

of switched reluctance motor for closed-loop current

control", IEEE Trans. Ind. Appl., 52(4), pp. 3146{

3158 (2016).

33. Li, X. and Shamsi, P. Inductance surface learning for

model predictive current control of switched reluctance

motors", IEEE Trans. Transport. Electric., 1(3), pp.

287{297 (2015).

34. Mikail, R., Husain, I., Sozer, Y., et al. A xed

switching frequency predictive current control method

for switched reluctance machines", IEEE Trans. Ind.

Appl., 50(6), pp. 3717{3726 (2014).

35. Pestana, L.M., Calado, M.R.A., and Mariano, S.

Direct instantaneous thrust control of 3 phase linear

switched reluctance actuator", International Conference

and Exposition on Electrical and Power Engineering,

Iasi, Romania, pp. 436{440 (2012).

36. Sozer, Y., Husain, I., and Torrey, D.A. Guidance

in selecting advanced control techniques for switched

reluctance machine drives in emerging applications",

IEEE Trans. Ind. Appl., 51(6), pp. 4505{4514 (2015).

37. Inderka, R.B. and DeDoncker, R.W.A. DITC-direct

instantaneous torque control of switched reluctance

drives", IEEE Trans. Ind. Appl., 39(4), pp. 1046{1051

(2003).

38. Xue, X.D., Cheng, K.W.E., and Ho, S.L. Optimization

and evaluation of torque-sharing functions

for torque ripple minimization in switched reluctance

motor drives", IEEE Trans. Power Electron., 24(9),

pp. 2076{2090 (2009).

39. Gan, W., Cheung, N.C., and Li, Q. Position control

of linear switched reluctance motors for high-precision

applications", IEEE Trans. Ind. Appl., 39(5), pp.

1350{1362 (2003).

40. Husain, I. and Ehsani, M. Torque ripple minimization

in switched reluctance motor drives by PWM current

control", IEEE Trans. Power Electron., 11(1), pp. 83{

88 (1996).

41. Ye, J., Bilgin, B., and Emadi, A. An extendedspeed

low-ripple torque control of switched reluctance

motor drives", IEEE Trans. Power Electron., 30(3),

pp. 1457{1470 (2015).

42. Husain, I. Minimization of torque ripple in SRM

drives", IEEE Trans. Ind. Electron., 49(1), pp. 28{39

(2002).

43. Mademlis, C. and Kioskeridis, I. Performance optimization

in switched reluctance motor drives with online

commutation angle control", IEEE Trans. Energy

Convers., 18(3), pp. 448{457 (2003).

Volume 27, Issue 6 - Serial Number 6

Transactions on Computer Science & Engineering and Electrical Engineering (D)

November and December 2020Pages 3140-3149