Instantaneous thrust control of linear switched reluctance motors with segmental translator

Document Type : Article

Authors

Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, P.O. Box 8731753153, Iran

Abstract

The linear switched reluctance machine (LSRM) has all advantages of rotary switched reluctance machine including simple and rugged structure, absence of magnetic material and windings on translator, high reliability and appropriate performance over a wide range of speed. Like rotary switched reluctance motor with segmental rotor, segmental translator linear switched reluctance motor (STLSRM) has capability to produce higher output power/weight in comparison to the conventional linear switched reluctance motors. Due to high advantages of the STLSRM drive, various control algorithms including current control, model predictive control, direct force control, universal control and force distribution function are investigated for the first time to control the instantaneous thrust of this motor. Applying these algorithms to a typical three-phase STLSRM, simulation results are presented and they are compared together from the force ripple reduction point of view.

Keywords

Main Subjects


References
1. Todd, R., Valdivia, V., Bryan, F.J., et al. Behavioural
modelling of a switched reluctance motor drive for
aircraft power systems", IET Electr. Syst. Transp.,
4(4), pp. 107{113 (2014).
2. Zhu, J., Cheng, K.W.E., Xue, X., et al. Design of
a new enhanced torque in-wheel switched reluctance
motor with divided teeth for electric vehicles", IEEE
Trans. Magn., 53(11), 2501504 (2017).
3. Mishra, A.K. and Singh, B. Solar photovoltaic array
dependent dual output converter based water pumping
using switched reluctance motor drive", IEEE Trans.
Ind. Appl., 53(6), pp. 5615{5623 (2017).
4. Wang, D., Wang, X., and Du, X.F. Design and
comparison of a high force density dual-side linear
switched reluctance motor for long rail propulsion
application with low cost", IEEE Trans. Magn., 53(6),
7207204 (2017).
5. Sahin, C., Amac, A.E., Karacor, M., et al. Reducing
torque ripple of switched reluctance machines by relocation
of rotor moulding clinches", IET Electr. Power
Appl., 6(9), pp. 753{760 (2012).
6. Ma, C. and Qu, L. Multiobjective optimization of
switched reluctance motors based on design of experiments
and particle swarm optimization", IEEE Trans.
Energy Convers., 30(3), pp. 1144{1153 (2015).
7. Ye, J., Bilgin, B., and Emadi, A. An oine torque
sharing function for torque ripple reduction in switched
reluctance motor drives", IEEE Trans. Energy Convers.,
30(2), pp. 726{735 (2015).
8. Deng, X., Mecrow, B., Wu, H., et al. Design and
development of low torque ripple variable-speed drive
system with six-phase switched reluctance motors",
IEEE Trans. Energy Convers., 33(1), pp. 420{429
(2018).
9. Bae, H.K., Lee, B.S., Vijayraghavan, P., et al. A linear
switched reluctance motor: converter and control",
IEEE Trans. Ind. Appl., 36(5), pp. 1351{1359 (2000).
10. Gan, W.C., Cheung, N.C., and Qiu, L. Position
control of linear switched reluctance motors for
high-precision applications", IEEE Trans. Ind. Appl.,
39(5), pp. 1350{1362 (2003).
11. Lim, H.S. and Krishnan, R. Ropeless elevator with
linear switched reluctance motor drive actuation systems",
IEEE Trans. Ind. Electron., 54(4), pp. 2209{
2218 (2007).
12. Zhao, S.W., Cheung, N.C., Gan, W.C., et al.
Passivity-based control of linear switched reluctance
motors with robustness consideration", IET Electr.
Power Appl., 2(3), pp. 164{171 (2008).
13. Lim, H.S., Krishnan, R., and Lobo, N.S. Design and
control of a linear propulsion system for an elevator
using linear switched reluctance motor drives", IEEE
Trans. Ind. Electron., 55(2), pp. 534{542 (2008).
14. Zhao, S.W., Cheung, N.C., Gan, W.C., et al. Highprecision
position control of a linear-switched reluctance
motor using a self-tuning regulator", IEEE
Trans. Power Electron., 25(11), pp. 2820{2827 (2010).
15. Pan, J.F., Cheung, N.C., and Zou, Y. An improved
force distribution function for linear switched
reluctance motor on force ripple minimization with
nonlinear inductance modeling", IEEE Trans. Magn.,
48(11), pp. 3064{3067 (2012).
16. Pan, J.F., Zou, Y., and Cao, G. Adaptive controller
for the double-sided linear switched reluctance motor
based on the nonlinear inductance modeling", IET
Electr. Power Appl., 7(1), pp. 1{15 (2013).
17. Masoudi, S., Feyzi, M.R., and Shari an, M.B. Force
ripple and jerk minimisation in double sided linear
switched reluctance motor used in elevator application",
IET Electr. Power Appl., 10(6), pp. 508{516
(2016).
18. Ganji, B. and Askari, M.H. Analysis and modeling
of di erent topologies for linear switched reluctance
motor using nite element method", Alexandria Engineering
Journal, 55, pp. 2531{2538 (2016).
19. Wang, D., Du, X., Zhang, D., et al. Design, optimization,
and prototyping of segmental-type linear
switched-reluctance motor with a toroidally wound
mover for vertical propulsion application", IEEE
Trans. Ind. Electron., 65(2), pp. 1865{1874 (2018).
20. Krishnan, R. Switched reluctance motor drives: modeling,
simulation, analysis, design, and applications",
CRC press (2001).
21. Vijayakumar, K., Karthikeyan, R., Paramasivam, S.,
et al. Switched reluctance motor modeling, design,
simulation, and analysis: a comprehensive review",
IEEE Trans. Magn., 44(12), pp. 4605{4817 (2008).
22. Cao, G., Chen, N., Huang, S., Xiao, S., and He, J.
Nonlinear modeling of the
ux linkage in 2-D plane for
the planar switched reluctance motor", IEEE Trans.
Magn., 54(11), Article no. 8206605 (2018).
23. Cao, G., Li, L., Huang, S., et al. Nonlinear modeling
of electromagnetic forces for the planar switched reluctance
motor", IEEE Trans. Magn., 51(11), 8206605
(2015).
A. Zare Chavoshi and B. Ganji/Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3140{3149 3149
24. Arehpanahi, M. and Sanaei, V. Optimal design of
interior permanent magnet motor with wide
ux weakening
range", Scientia Iranica, 22(3), pp. 1045{1051
(2015).
25. Arehpanahi, M. and Kashe , H. Cogging torque
reduction of interior permanent magnet synchronous
motor (IPMSM)", Scientia Iranica, 25(3), pp. 1471{
1477 (2018).
26. Cheok, D. and Fukuda, Y. A new torque and
ux
control method for switched reluctance motor drives",
IEEE Trans. Power Electron., 17(4), pp. 543{557
(2002).
27. Mikail, R., Husain, I., Sozer, Y., et al., Torque ripple
minimization of switched reluctance machines through
current pro ling", IEEE Trans. Ind. Appl., 49(3), pp.
1258{1267 (2013).
28. Shao, B. and Emadi, A. A digital PWM control
for switched reluctance motor drives", IEEE Vehicle
Power and Propulsion Conference, Lille, France, pp.
1{6 (2010).
29. Ruiwei, Z., Xisen, Q., Liping, J., et al. An adaptive
sliding mode current control for switched reluctance
motor", IEEE Conference and Expo Transportation
Electri cation Asia-Paci c (ITEC Asia-Paci c), Beijing,
country, pp. 1{6 (2014).
30. Schulz, S.E. and Rahman, K.M. High-performance
digital PI current regulator for EV switched reluctance
motor drives", IEEE Trans. Ind. Appl., 39(4), pp.
1118{1126 (2003).
31. Lin, Z., Reay, D., Williams, B., et al. Highperformance
current control for switched reluctance
motors based on on-line estimated parameters", IET
Electr. Power Appl., 4(1), pp. 67{74 (2010).
32. Ahmad, S.S. and Narayanan, G. Linearized modeling
of switched reluctance motor for closed-loop current
control", IEEE Trans. Ind. Appl., 52(4), pp. 3146{
3158 (2016).
33. Li, X. and Shamsi, P. Inductance surface learning for
model predictive current control of switched reluctance
motors", IEEE Trans. Transport. Electri c., 1(3), pp.
287{297 (2015).
34. Mikail, R., Husain, I., Sozer, Y., et al. A xed
switching frequency predictive current control method
for switched reluctance machines", IEEE Trans. Ind.
Appl., 50(6), pp. 3717{3726 (2014).
35. Pestana, L.M., Calado, M.R.A., and Mariano, S.
Direct instantaneous thrust control of 3 phase linear
switched reluctance actuator", International Conference
and Exposition on Electrical and Power Engineering,
Iasi, Romania, pp. 436{440 (2012).
36. Sozer, Y., Husain, I., and Torrey, D.A. Guidance
in selecting advanced control techniques for switched
reluctance machine drives in emerging applications",
IEEE Trans. Ind. Appl., 51(6), pp. 4505{4514 (2015).
37. Inderka, R.B. and DeDoncker, R.W.A. DITC-direct
instantaneous torque control of switched reluctance
drives", IEEE Trans. Ind. Appl., 39(4), pp. 1046{1051
(2003).
38. Xue, X.D., Cheng, K.W.E., and Ho, S.L. Optimization
and evaluation of torque-sharing functions
for torque ripple minimization in switched reluctance
motor drives", IEEE Trans. Power Electron., 24(9),
pp. 2076{2090 (2009).
39. Gan, W., Cheung, N.C., and Li, Q. Position control
of linear switched reluctance motors for high-precision
applications", IEEE Trans. Ind. Appl., 39(5), pp.
1350{1362 (2003).
40. Husain, I. and Ehsani, M. Torque ripple minimization
in switched reluctance motor drives by PWM current
control", IEEE Trans. Power Electron., 11(1), pp. 83{
88 (1996).
41. Ye, J., Bilgin, B., and Emadi, A. An extendedspeed
low-ripple torque control of switched reluctance
motor drives", IEEE Trans. Power Electron., 30(3),
pp. 1457{1470 (2015).
42. Husain, I. Minimization of torque ripple in SRM
drives", IEEE Trans. Ind. Electron., 49(1), pp. 28{39
(2002).
43. Mademlis, C. and Kioskeridis, I. Performance optimization
in switched reluctance motor drives with online
commutation angle control", IEEE Trans. Energy
Convers., 18(3), pp. 448{457 (2003).