TF/TA optimal Flight trajectory planning using a novel regenerative flattener mapping method

Document Type : Article


Aerospace Group, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran


In this paper, a new methodology has been proposed to enhance the conformal mapping applications in the process of optimum trajectory planning in Terrain Following (TF) and Terrain Avoidance (TA) Flights. The new approach uses the conformal mapping concept as a flattener tool to transform the constrained trajectory-planning problem with flight altitude restrictions due to the presence of obstacles into a regenerated problem with no obstacle and minimal height constraints. In this regard, the Schwarz–Christoffel theorem has been utilized to incorporate the height constraints into the aircraft dynamic equations of motion. The regenerated optimal control problem then is solved employing a numerical method namely the direct Legendre-Gauss-Radau pseudospectral algorithm. A composite performance index of flight time, terrain masking, and aerodynamic control effort is optimized. Furthermore, to obtain realistic trajectories, the aircraft maximum climb and descent rates are imposed as inequality constraints in the solution algorithm. Several case studies for two-dimensional flight scenarios show the applicability of this approach in TF/TA trajectory-planning. Extensive simulations confirm the efficiency of the proposed approach and verify the feasibility of solutions satisfying all of the constraints underlying the problem


Main Subjects

1. International Civil Aviation Organization, Safety Report.  A Coordinated, Risk-based Approach to Improving  Global Aviation Safety, Montr_eal, Canada (2014).  2. Nonami, K., Kendoul, F., Suzuki, S., Wang, W., and  Nakazawa, D. Introduction", In Autonomous Flying  Robots, pp. 1{29, Springer, Tokyo, Japan (2010).  3. Shiller, Z. O_-line and on-line trajectory planning",  In Motion and Operation Planning of Robotic Systems,  G. Carbone and F. Gomez-Barvopp, Eds., pp. 29{62,  Springer, New York (2015).  4. Kirk, D.E. The variational approach to optimal  A. Kosari and S.I. Kassaei/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 1324{1338 1337  control problems", In Optimal Control Theory: An  Introduction, Dover Publication Inc., New York (2004).  5. Yang, H. and Zhao, Y. Trajectory planning for  autonomous aerospace vehicles amid known obstacles  and conicts", Journal of Guidance, Control, and  Dynamics, 27(6), pp. 997{1008 (2004).  6. Vachtsevanos, G., Tang, L., Drozeski, G., and Gutierrez,  L. From mission planning to ight control of unmanned  aerial vehicles: Strategies and implementation  tools", Annual Reviews in Control, 29(1), pp. 101{115  (2005).  7. Karelahti, J., Virtanen, K., and  Ostrom, J. Automated  generation of realistic near-optimal aircraft  trajectories", Journal of Guidance, Control, and Dynamics,  31(3), pp. 674{688 (2008).  8. Lee, S., Cho, A., and Kee, C. Integrated waypoint  path generation and following of an unmanned aerial  vehicle", Aircraft Engineering and Aerospace Technology,  82(5), pp. 296{304 (2010).  9. Babaei, A.R. and Mortazavi, M. Fast trajectory  planning based on in-ight waypoints for unmanned  aerial vehicles", Aircraft Engineering and Aerospace  Technology, 82(2), pp. 107{115 (2010).  10. Lin, Z., Castano, L., and Xu, H. A fast obstacle  collision avoidance algorithm for _xed wing UAS",  2018 International Conference on Unmanned Aircraft  Systems (ICUAS), Tokyo, Japan, pp. 559{568 (2018).  11. Naidu, D.S. Constrained optimal control systems", In  Optimal Control Systems, CRC Press LLC, Washington,  D.C, pp. 293{361 (2003).  12. Menon, P.K.A., Cheng, V.H.L., and Kim, E. Optimal  trajectory synthesis for terrain-following ight", Journal  of Guidance, Control, and Dynamics, 14(4), pp.  807{813 (1991).  13. Malaek, S.M. and Kosari, A. Dynamic based cost  functions for TF/TA ights", IEEE Transactions on  Aerospace and Electronic Systems, 48(1), pp. 44{63  (2012).  14. Malaek, S.M. and Kosari, A. Novel minimum time  trajectory planning in terrain following ights", IEEE  Transactions on Aerospace and Electronic Systems,  43(1), pp. 2{12 (2007).  15. Kosari, A. and Kassaei, S.I. Dynamic constrained low  altitude ight maneuvers with constant energy", 2017  IEEE International Conference on Power, Control,  Signals and Instrumentation Engineering (ICPCSI),  India, pp. 3085{3089 (2017).  16. Denton, J.E. and Jones, R.V. A new technique for  terrain following/terrain avoidance guidance command  generation", 40th AGARD Guidance and Control Symposium,  New York (1985).  17. Jalali-Naini, S.H. and Sajjadi, S.H. First-order optimal  line-of-sight guidance for stationary Targets",  Scientia Iranica, 23(2), pp. 588{599 (2016).  18. Kosari, A. Maghsoudi, H., and Lavaei, A. Path  generation for ying robots in mountainous regions",  International Journal of Micro Air Vehicles, 9(1), pp.  44{60 (2017).  19. Williams, P. Three-dimensional aircraft terrainfollowing  via real-time optimal control", Journal of  Guidance, Control, and Dynamics, 30(4), pp. 1201{  1206 (2007).  20. Kamyar, R. and Taheri, E. Aircraft optimal  terrain/threat-based trajectory planning and control",  Journal of Guidance, Control, and Dynamics, 37(2),  pp. 466{483 (2014).  21. Qing, L. Aircraft route optimization using genetic  algorithms", Second International Conference on Genetic  Algorithms in Engineering Systems, Glascow,  UK, pp. 394{397 (1997).  22. Nikolos, I.K., Valavanis, K.P., Tsourveloudis, N.C.,  and Kostaras, A.N. Evolutionary algorithm based  o_ine/online path planner for uav navigation", IEEE  Transactions on Systems, Man and Cybernetics, Part  B (Cybernetics), 33(6), pp. 898{912 (2003).  23. Nikolos, I.K. and Tsourvelouds, N.C. Path planning  for cooperating unmanned vehicles over 3-D terrain",  Informatics in Control, Automation and Robotics: Selected  Papers from the International Conference on Informatics  in Control, Automation and Robotics 2007,  Berlin, pp. 153{168 (2009).  24. Sun, T.Y., Huo, C.L., Tsai, S.J., and Liu, C.C. Optimal  UAV ight path planning using skeletonization  and particle swarm optimizer", 2008 IEEE Congress  on Evolutionary Computation (IEEE World Congress  on Computational Intelligence), Hong Kong, Chin, pp.  1183{1188 (2008).  25. Karimi, J. and Pourtakdoust, S.H. Optimal  maneuver-based motion planning over terrain and  threats using a dynamic hybrid PSO algorithm",  Aerospace Science and Technology, 26(1), pp. 60{71  (2013).  26. Nobahari, H. and Arab Kermani, M. Integrated  optimization of guidance and control parameters in a  dual spin ying vehicle", Scientia Iranica, 24(5), pp.  2473{2489 (2017).  27. Kosari, A., Maghsoudi, H., Lavaei, A., and Ahmadi,  R. Optimal online trajectory generation for a ying  robot for terrain following purposes using neural  network", Proceedings of the Institution of Mechanical  Engineers, Part G: Journal of Aerospace Engineering,  229(6), pp. 1124{1141 (2015).  28. Rahim, M. and Malaek, S.M. Intelligent operation  using terrain following ight in unmanned aerial vehicles",  2007 IEEE Aerospace Conference, Big Sky, MT,  USA, pp. 1{8 (2007).  29. Rahim, M. and Malaek, S.M. Aircraft terrain following  ights based on fuzzy logic", Aircraft Engineering  and Aerospace Technology, 83(2), pp. 94{104 (2011).  1338 A. Kosari and S.I. Kassaei/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 1324{1338  30. Bagherian, M. Unmanned aerial vehicle terrain following/  terrain avoidance/threat avoidance trajectory  planning using fuzzy logic", Journal of Intelligent &  Fuzzy Systems, 34(3), pp. 1791{1799 (2018).  31. Vachhani, L., Kumar, P.R., and Seridharan, Advances  in mapless and map-based strategies for robot  navigation a review", In Robot Vision: Strategies,  Algorithms and Motion Planning, K.D. Ito, Ed., Nova  Science Publishers, Inc., New York (2009).  32. Megherbi, D. and Wolovich, W.A. Real-time velocity  feedback obstacle avoidance via complex variables and  conformal mapping", Proceedings 1992 IEEE International  Conference on Robotics and Automation, Nice,  France, pp. 206{213 (1992).  33. Chuang, J.H. and Ahuja, N. An analytically tractable  potential _eld model of free space and its application in  obstacle avoidance", IEEE Transactions on Systems,  Man and Cybernetics, Part B (Cybernetics), 28(5), pp.  729{736 (1998).  34. Chen, Y., Luo, G., Mei, Y., Yu, J., and Su, X. UAV  path planning using arti_cial potential _eld method  updated by optimal control theory", International  Journal of Systems Science, 47(6), pp. 1407{1420  (2016).  35. Qu, Y., Zhang, Y., and Zhang, Y. A global path  planning algorithm for _xed-wing UAVs", Journal of  Intelligent & Robotic Systems, 91(3), pp. 691{707  (2018).  36. Kosari, A. and Kassaei, S.I. Using conformal mapping  in developing a novel optimal obstacle-avoidance  trajectory-planning for a ying robot", 2017 IEEE  International Conference on Power, Control, Signals  and Instrumentation Engineering (ICPCSI), India, pp.  3080{3084 (2017).  37. Roskam, J. General equations of motion for rigid  airplanes", In Airplane Flight Dynamics and Automatic  Flight Controls, pp. 9{46, Roskam Aviation and  Engineering Corporation, Lawrence (2001).  38. Brown, J.W. and Churchill R.V. Conformal mapping",  In Complex Variables and Applications, 8th  Edn., pp. 355{372, McGraw-Hill, Michigan (2008).  39. Abolwitz, M.J. and Fokas, A.S. Conformal mappings  and applications", In Complex Variables Introduction  and Applications, 2nd Edn., pp. 311{408, Cambridge  University Press, New York (2003).  40. Driscoll, T.A. and Trefethen, L.N. Numerical methods",  In Schwarz-Christo_el Mapping, pp. 23{39,  Cambridge University Press, New York (2003).  41. Faires, J.D. and Burden, R. Numerical solutions of  nonlinear systems of equations", in Numerical Analysis,  9th Edn., pp. 629{669, Brooks/Cole Cengage  Learning, New York (2010).  42. Rao, A.V. Survey of numerical methods for optimal  control", Advances in the Astronautical Sciences,  135(1), pp. 497{528 (2009).  43. Betts, J.T. Survey of numerical methods for trajectory  optimization", Journal of Guidance, Control, and  Dynamics, 21(2), pp. 193{207 (1998).  44. Huntington, G.T. Advancement and analysis of a  gauss pseudospectral transcription for optimal control  problems", PhD Thesis, Department of Aeronautics  and Astronautics, Massachusetts Institute of Technology  (2007).  45. Garg, D., Patterson, M., Hager, W., Rao, A.V., Benson,  D.A., and Huntington, G.T. A uni_ed framework  for the numerical solution of optimal control problems  using pseudospectral methods", Automatica, 46(11),  pp. 1843{1851 (2010).  46. Garg, D., Hager, W., and Rao, A.V. Pseudospectral  methods for solving in_nite-horizon optimal control  problems", Automatica, 47(4), pp. 829{837 (2011).  47. Gill, P.E., Murray, W., and Saunders, M.A. SNOPT:  an SQP algorithm for large-scale constrained optimization",  SIAM Journal on Optimization, 12(4), pp. 979{  1006 (2002).  48. Khademi, I., Maleki, B., and Nasseri Mood, A. Optimal  three dimensional terrain following/terrain avoidance  for aircraft using direct transcription method",  2011 19th Mediterranean Conference on Control & Automation  (MED), Corfu, Greece, pp. 254{258 (2011).