Effects of process parameters in gas tungsten arc welding of thin titanium plates

Document Type : Article


1 a. Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Vietnam. b. Faculty of Mechanical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet Street, Hanoi, 100000, Vietnam

2 Faculty of Mechanical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet Street, Hanoi, 100000, Vietnam


This work systematically investigated the effects of process parameters on the technological responses, including the tensile force TF and average micro hardness AMH in the gas tungsten arc welding (GTAW) of titanium. Controlled parameters are the welding current I, gas flow rate F, and arc gap G. The objective of this work is to improve the tensile strength with respect to micro hardness constraints. A GTAW welding machine was adopted in conjunction with the Box-Behnken matrix to conduct experimental trails. The nonlinear relationships between welding parameters and responses were developed using response surface method (RSM). Subsequently, an optimization technique entitled desirability approach (DA) was used to solve the trade-off analysis between responses considered and find the optimal parameters. The conformity test was performed in order to evaluate the accuracy of optimizing values. The results showed that the welding current had the greatest influence on the outputs considered, compared to other factors. The measured improvements using optimal parameters of tensile force and average micro hardness are approximately 4.10% and 6.12% in comparison with initial settings. A hybrid approach comprising RSM and desirability approach can be considered as an effective method for parameter optimization and observation of reliable values in GTAW processes.


Main Subjects

1. Kurtulmus, M. E_ects of welding parameters on  penetration depth in mild steels A-TIG welding",  Sci. Iran., 26(3), pp. 1400{1404 (2019). DOI:  10.24200/SCI.2018.20145.  2. Moghaddam, M.A., Golmezerji, R., and Kolahan, F.  Simultaneous optimization of joint edge geometry and  process parameters in gas metal arc welding using  integrated ANN - PSO approach", Sci. Iran., 24(1),  pp. 260{273 (2017).  3. Pamnani, R., Vasudevan, M., Jayakumar, T., and  Vasantharaja, P. Development of activated ux, optimization  of welding parameters and characterization  of weld joint for DMR-249A shipbuilding steel", Trans  Indian Inst. Met., 70(1), pp. 49{57 (2017).  4. Chandrasekar, G., Kailasanathan, C., Verma, D.K.,  and Nandagopal, K. Optimization of welding parameters,  inuence of activating ux and investigation  on the mechanical and metallurgical properties of  activated TIG weldments of AISI 316 L stainless steel",  Trans Indian Inst. Met., 70(3), pp. 671{684 (2017).  5. Korra, N.N., Vasudevan, M., and Balasubramanian,  K.R. Optimization of A-TIG welding of duplex stainless  steel alloy 2205 based on response surface methodology  and experimental validation", Proc. Inst. Mech.  Eng. Pt. L J. Mater. Des. Appl., 230(4), pp. 837{864  (2016).  6. Pamnani, R., Vasudevan, M., Vasantharaja, P., and  Jayakumar, T. Optimization of A-GTAW welding  parameters for naval steel (DMR 249 A) by design of  experiments approach", Proc. Inst. Mech. Eng. Pt. L  J. Mater. Des. Appl., 231(3), pp. 320{331 (2017).  7. Vidyarthy, R.S. and Dwivedi, D.K. Activating ux  tungsten inert gas welding for enhanced weld penetration",  J. Manuf. Process, 22, pp. 211{228 (2016).  8. Bhattacharya, A. and Singla, S. Dissimilar GTAW  between AISI 304 and AISI 4340 steel: Multi-response  optimization by analytic hierarchy process", Proc.  Inst. Mech. Eng. E, 231(4), pp. 824{835 (2017).  9. Vasantharaja, P. and Vasudevan, M. Optimization of  A-TIG welding process parameters for RAFM steel using  response surface methodology", Proc. Inst. Mech.  Eng. Pt. L J. Mater. Des. Appl., 232(2), pp. 121{136  (2018).  10. Vidyarthy, R.S., Dwivedi, D.K., and Muthukumaran,  V. Optimization of A-TIG process parameters using  response surface methodology", Mater Manuf. Proces,  33(7), pp. 709{717 (2018).  11. Ahmadi, E. and Ebrahimi, A.R. Welding of 316L  austenitic stainless steel with activated tungsten inert  gas process", J. Mater. Eng. Perform., 24(2), pp.  1065{1071 (2015).  12. Joseph, J. and Muthukumaran, S. Optimization of  activated TIG welding parameters for improving weld  joint strength of AISI 4135 PM steel by genetic algorithm  and simulated annealing", Int. J. Adv. Manuf.  Technol., 93(1{4), pp. 23{34 (2017).  13. Pichumani, S., Srinivasan, R., and Ramamoorthi,  V. Mechanical properties, thermal pro_les, and microstructural  characteristics of Al-8 %SiC composite  T.-T. Nguyen and V.-T. Pham/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 1313{1323 1323  welded using pulsed current TIG welding", J. Mech.  Sci. Technol., 32(8), pp. 1713{1723 (2018).  14. Vidyarthy, R.S., Dwivedi, D.K., and Vasudevan, M.  Inuence of M-TIG and A-TIG welding process on  microstructure and mechanical behavior of 409 ferritic  stainless steel", J. Mater. Eng. Perform., 26(3), pp.  1391{1403 (2017).  15. Shen, J., Li, S., Zhai. D., Wen, L., Liu, K., and Dai,  Y. E_ects of SiC on the Strengthening Activated  Tungsten Inert Gas (SA-TIG) welded of magnesium  alloy", Mater Manuf Proces, 28(11), pp. 1240{1247  (2013).  16. Goyal, A. and Garg, R.K. Modeling and optimization  of friction stir welding parameters in joining 5086 H32  aluminium alloy", Sci. Iran, 26(4), pp. 2407{2417  (2019). DOI: 10.24200/SCI.2018.5525.1325  17. Mir Mohammad Hosseini, F., Ebadi, T., Eslami, A., et  al. Investigation of geotechnical properties of clayey  soils contaminated with gasoil using Response Surface  Methodology (RSM)", Sci. Iran, 26(3), pp. 1122{1134  (2019). DOI: 10.24200/SCI.2017.4574  18. Tang, L.N., Ma, Y.Z., Wang, J.J., et al. Robust  parameter design of supply chain inventory policy  considering the uncertainty of demand and lead  time", Sci. Iran, 26(5), pp. 2971{2987 (2018). DOI:  10.24200/SCI.2018.5205.1217  19. Rajakumar, S. and Balasubramanian, V. Di_usion  bonding of titanium and AA 7075 aluminum alloy dissimilar  joints-process modeling and optimization using  desirability approach", Int. J. Adv. Manuf. Technol.,  86(1{4), pp. 1095{1112 (2016).