Numerical and experimental study of the effect of the process parameters on the void evolution in the cold extrusion of rods

Document Type : Article

Authors

Department of Mechanical Engineering , Babol Noshirvani University of Technology, Babol, Iran.

Abstract

Elimination of defects such as voids and internal cavities is required in metal forming processes to avoid premature failure of mechanical components during service. In this paper, the effect of different parameters on the void closure behavior is studied in the cold extrusion of rods. A three dimensional nonlinear dynamic finite element model is developed for this purpose. Experiments are also performed on aluminum samples to verify the accuracy of the finite element model. Results of the developed model are in good agreement with experimental findings. It is observed that voids contract in all directions during the direct extrusion which is in contrast to some other metal forming processes like forging and rolling. Effect of parameters such as die semi-angle, friction coefficient and void location on the void evolution is systematically investigated and discussed. The results of this study can help industries using metal extrusion for optimized design and control of the process to reduce voids and porosity and increase the strength of their product.

Keywords

Main Subjects


1. Chen, M.-S., Lin, Y.C., and Chen, K.-H. Evolution of  elliptic-cylindrical and circular-cylindrical voids inside  power-law viscous solids", Int. J. Plast., 53(1), pp.  206{227 (2014).  2. Vladimirov, I.N., Pietryga, M.P., Kiliclar, Y., Tini, V.,  and Reese, S. Failure modelling in metal forming by  means of an anisotropic hyperelastic-plasticity model  with damage", Int. J. Damage Mech., 23(8), pp. 1096{  1132 (2014).  3. Saby, M., Bernacki, M., and Bouchard, P.-O. Understanding  and modeling of void closure mechanisms in  hot metal forming processes: A multiscale approach",  Procedia Eng., 81(1), pp. 137{142 (2014).  4. Kittner, K., Wiesner, J., and Kawalla, R. A new  approach for void closure in bulk metal forming", Key  Eng. Mater., 716(3), pp. 595{604 (2016).  5. Patel, M., Kim, H.-S., Park, H.-H., and Kim, J.  Active adoption of void formation in metal-oxide for  all transparent super-performing photodetectors", Sci.  Rep., 6(2), p. 25461 (2016).  6. Saby, M., Bouchard, P.-O., and Bernacki, M. A  geometry-dependent model for void closure in hot  metal forming", Finite Elem. Anal. Des., 105(4), pp.  63{78 (2015).  7. Saby, M., Bouchard, P.-O., and Bernacki, M. Void  closure criteria for hot metal forming: A review", J.  Manuf. Process., 19(1), pp. 239{250 (2015).  8. Chen, J., Chandrashekhara, K., Mahimkar, C.,  Lekakh, S.N., and Richards, V.L. Void closure prediction  in cold rolling using _nite element analysis and  neural network", J. Mater. Process. Technol., 211(2),  pp. 245{255 (2011).  9. Kakimoto, H., Arikawa, T., Takahashi, Y., Tanaka, T.,  and Imaida, Y. Development of forging process design  to close internal voids", J. Mater. Process. Technol.,  210(3), pp. 415{422 (2010).  10. Huang, G., Han, Y., Guo, X., Qiu, D., Wang, L.,  Lu, W., and Zhang, D. E_ects of extrusion ratio on  microstructural evolution and mechanical behavior of  in situ synthesized Ti-6Al-4V composites", Mater. Sci.  Eng. A., 688(1), pp. 155{163 (2017).  11. Kim, Y., Cho, J., and Bae, W. E_cient forging  process to improve the closing e_ect of the inner void  on an ultra-large ingot", J. Mater. Process. Technol.,  211(6), pp. 1005{1013 (2011).  12. Chen, K., Yang, Y., Shao, G., and Liu, K. Strain  function analysis method for void closure in the forging  process of the large-sized steel ingot", Comput. Mater.  Sci., 51(1), pp. 72{77 (2012).  13. Chen, J., Chandrashekhara, K., Mahimkar, C.,  Lekakh, S.N., and Richards, V.L. Study of void  closure in hot radial forging process using 3D nonlinear  _nite element analysis", Int. J. Adv. Manuf. Technol.,  62(9), pp. 1001{1011 (2012).  14. Chen, M.-S. and Lin, Y.C. Numerical simulation and  experimental veri_cation of void evolution inside large  forgings during hot working", Int. J. Plast., 49(2), pp.  53{70 (2013).  15. Park, J.-J. Finite-element analysis of cylindrical-void  closure by at-die forging", ISIJ Int., 53(8), pp. 1420{  1426 (2013).  16. Saby, M., Bernacki, M., Roux, E., and Bouchard, P.-  O. Three-dimensional analysis of real void closure at  the meso-scale during hot metal forming processes",  Comput. Mater. Sci., 77(3), pp. 194{201 (2013).  17. Saboori, M., Bakhshi-Jooybari, M., Noorani-Azad, M.,  and Gorji, A. Experimental and numerical study  of energy consumption in forward and backward rod  extrusion", J. Mater. Process. Technol., 177(1), pp.  612{616 (2006).  294 M. Rajabzadeh Gatabi et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 287{294  18. Noorani-Azad, M., Bakhshi-Jooybari, M., Hosseinipour,  S.J., and Gorji, A. Experimental and numerical  study of optimal die pro_le in cold forward rod  extrusion of aluminum", J. Mater. Process. Technol.,  164(2), pp. 1572{1577 (2005).  19. Bakhshi-Jooybari, M., Saboori, M., Noorani-Azad, M.,  and Hosseinipour, S.J. Combined upper bound and  slab method, _nite element and experimental study of  optimal die pro_le in extrusion", Mater. Des., 28(6),  pp. 1812{1818 (2007).  20. Ko_c, M., Hydroforming for Advanced Manufacturing,  Elsevier (2008).  21. Palumbo, G., Sorgente, D., and Tricarico, L. A  numerical and experimental investigation of AZ31  formability at elevated temperatures using a constant  strain rate test", Mater. Des., 31(3), pp. 1308{1316  (2010).  22. Chen, D.-C., Chang, D.-Y., Chen, F.-H., and Kuo, T.-  Y. Application of ductile fracture criterion for tensile  test of zirconium alloy 702", Sci. Iran., 25(2), pp. 824{  829 (2018).  23. A Nurul, M. and Syahrullail, S. A new approach  for cold extrusion process: Dimples indentation on  sliding contact surface and palm oil as an alternative  lubricant", Sci. Iran., 24(6), pp. 2875{2886 (2017).  24. Saha, P.K. Aluminum extrusion technology", ASM  International: Materials Park, 1(3), pp. 112{115  (2000).