1. Chen, M.-S., Lin, Y.C., and Chen, K.-H. Evolution of elliptic-cylindrical and circular-cylindrical voids inside power-law viscous solids", Int. J. Plast., 53(1), pp. 206{227 (2014). 2. Vladimirov, I.N., Pietryga, M.P., Kiliclar, Y., Tini, V., and Reese, S. Failure modelling in metal forming by means of an anisotropic hyperelastic-plasticity model with damage", Int. J. Damage Mech., 23(8), pp. 1096{ 1132 (2014). 3. Saby, M., Bernacki, M., and Bouchard, P.-O. Understanding and modeling of void closure mechanisms in hot metal forming processes: A multiscale approach", Procedia Eng., 81(1), pp. 137{142 (2014). 4. Kittner, K., Wiesner, J., and Kawalla, R. A new approach for void closure in bulk metal forming", Key Eng. Mater., 716(3), pp. 595{604 (2016). 5. Patel, M., Kim, H.-S., Park, H.-H., and Kim, J. Active adoption of void formation in metal-oxide for all transparent super-performing photodetectors", Sci. Rep., 6(2), p. 25461 (2016). 6. Saby, M., Bouchard, P.-O., and Bernacki, M. A geometry-dependent model for void closure in hot metal forming", Finite Elem. Anal. Des., 105(4), pp. 63{78 (2015). 7. Saby, M., Bouchard, P.-O., and Bernacki, M. Void closure criteria for hot metal forming: A review", J. Manuf. Process., 19(1), pp. 239{250 (2015). 8. Chen, J., Chandrashekhara, K., Mahimkar, C., Lekakh, S.N., and Richards, V.L. Void closure prediction in cold rolling using _nite element analysis and neural network", J. Mater. Process. Technol., 211(2), pp. 245{255 (2011). 9. Kakimoto, H., Arikawa, T., Takahashi, Y., Tanaka, T., and Imaida, Y. Development of forging process design to close internal voids", J. Mater. Process. Technol., 210(3), pp. 415{422 (2010). 10. Huang, G., Han, Y., Guo, X., Qiu, D., Wang, L., Lu, W., and Zhang, D. E_ects of extrusion ratio on microstructural evolution and mechanical behavior of in situ synthesized Ti-6Al-4V composites", Mater. Sci. Eng. A., 688(1), pp. 155{163 (2017). 11. Kim, Y., Cho, J., and Bae, W. E_cient forging process to improve the closing e_ect of the inner void on an ultra-large ingot", J. Mater. Process. Technol., 211(6), pp. 1005{1013 (2011). 12. Chen, K., Yang, Y., Shao, G., and Liu, K. Strain function analysis method for void closure in the forging process of the large-sized steel ingot", Comput. Mater. Sci., 51(1), pp. 72{77 (2012). 13. Chen, J., Chandrashekhara, K., Mahimkar, C., Lekakh, S.N., and Richards, V.L. Study of void closure in hot radial forging process using 3D nonlinear _nite element analysis", Int. J. Adv. Manuf. Technol., 62(9), pp. 1001{1011 (2012). 14. Chen, M.-S. and Lin, Y.C. Numerical simulation and experimental veri_cation of void evolution inside large forgings during hot working", Int. J. Plast., 49(2), pp. 53{70 (2013). 15. Park, J.-J. Finite-element analysis of cylindrical-void closure by at-die forging", ISIJ Int., 53(8), pp. 1420{ 1426 (2013). 16. Saby, M., Bernacki, M., Roux, E., and Bouchard, P.- O. Three-dimensional analysis of real void closure at the meso-scale during hot metal forming processes", Comput. Mater. Sci., 77(3), pp. 194{201 (2013). 17. Saboori, M., Bakhshi-Jooybari, M., Noorani-Azad, M., and Gorji, A. Experimental and numerical study of energy consumption in forward and backward rod extrusion", J. Mater. Process. Technol., 177(1), pp. 612{616 (2006). 294 M. Rajabzadeh Gatabi et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 287{294 18. Noorani-Azad, M., Bakhshi-Jooybari, M., Hosseinipour, S.J., and Gorji, A. Experimental and numerical study of optimal die pro_le in cold forward rod extrusion of aluminum", J. Mater. Process. Technol., 164(2), pp. 1572{1577 (2005). 19. Bakhshi-Jooybari, M., Saboori, M., Noorani-Azad, M., and Hosseinipour, S.J. Combined upper bound and slab method, _nite element and experimental study of optimal die pro_le in extrusion", Mater. Des., 28(6), pp. 1812{1818 (2007). 20. Ko_c, M., Hydroforming for Advanced Manufacturing, Elsevier (2008). 21. Palumbo, G., Sorgente, D., and Tricarico, L. A numerical and experimental investigation of AZ31 formability at elevated temperatures using a constant strain rate test", Mater. Des., 31(3), pp. 1308{1316 (2010). 22. Chen, D.-C., Chang, D.-Y., Chen, F.-H., and Kuo, T.- Y. Application of ductile fracture criterion for tensile test of zirconium alloy 702", Sci. Iran., 25(2), pp. 824{ 829 (2018). 23. A Nurul, M. and Syahrullail, S. A new approach for cold extrusion process: Dimples indentation on sliding contact surface and palm oil as an alternative lubricant", Sci. Iran., 24(6), pp. 2875{2886 (2017). 24. Saha, P.K. Aluminum extrusion technology", ASM International: Materials Park, 1(3), pp. 112{115 (2000).