Study of the effect of organic binders on 13X zeolite agglomeration and their CO2 adsorption properties

Document Type : Article

Authors

1 Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran 16846-13114.

2 Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran 16846-13114

Abstract

The aim of the present research is the shaping of zeolite 13X and study the effect of singular and binary system of binders. For this purpose, zeolite 13X was successfully synthesized under hydrothermal conditions. Different combinations of polyvinyl alcohol (PVA) and polyethylene glycol (PEG) have been used for shaping. Physical properties of granules were measured by nitrogen adsorption-desorption and results showed that increasing the binder content up to a certain amount, enhanced the physical properties but with a further increase in binder content surface area decreases. Also it was found that mechanical strength was decreased with increasing binder content after burnout

Keywords

Main Subjects


1. Kadish, K., Guilard, R., and Smith, K.M., The Porphyrin Handbook: Phthalocyanines: Properties and Materials, Elsevier Science (2006). 2. Bhatia, S., Zeolite Catalysts: Principles and Applications, Taylor & Francis (1989). 3. Flanigen, E.M., Broach, R.W., and Wilson, S.T. Introduction", In Zeolites in Industrial Separation and Catalysis, pp. 1-26, Wiley-VCH Verlag GmbH & Co. KGaA (2010). 4. Acton, Q.A., Fluorine Compounds-Advances in Research and Application, 2013 Edition", Scholarly Editions (2013). 5. Broach, R.W. Zeolite types and structures" In Zeolites in Industrial Separation and Catalysis, pp. 27-59, Wiley-VCH Verlag GmbH & Co. KGaA (2010). 6. M'Sirdi, N., Namaane, A., Howlett, R.J., and Jain, L.C., Proceedings of the 3rd International Conference on Sustainability in Energy and Buildings (SEB0 11), Springer (2012). 7. Khopkar, S.M., Basic Concepts of Analytical Chemistry, New Age International Publishers (1998). 8. Miao, T., Ju, S., and Xue, F. Selectivity adsorption of thiophene alkylated derivatives over modi_ed Cu+- 13X zeolite", J. Rare Earth, 30(8), pp. 807-813 (2012). 9. Arslan, A. and Veli, S. Zeolite 13X for adsorption of ammonium ions from aqueous solutions and hen slaughterhouse wastewaters", J. Taiwan Inst. Chem. Eng., 43(3), pp. 393-398 (2012). 10. Yu, X.H., Lu, H.L., Zhou, G.W., Zhou, L.G., and Zhang, Y.C. Absorption of methyl orange by modi_ed y zeolites", Adv. Mat. Res., 476-478, pp. 1365-1369 (2012). 11. Jinka, K.M., Sebastian, J., and Jasra, R.V. Epoxidation of cycloalkenes with cobalt(II)-exchanged zeolite X catalysts using molecular oxygen", J. Mol. Catal. A: Chem., 274(1-2), pp. 33-41 (2007). 12. Sievers, C., Liebert, J.S., Stratmann, M.M., Olindo, R., and Lercher, J.A. Comparison of zeolites LaX and LaY as catalysts for isobutane/2-butene alkylation", Appl. Catal. A, General, 336(1-2), pp. 89-100 (2008). 13. Soontornworajit, B., Wannatong, L., Hiamtup, P., Niamlang, S., Chotpattananont, D., Sirivat, A., and Schwank, J. Induced interaction between polypyrrole and SO2 via molecular sieve 13X", Mater. Sci. Eng. B, 136(1), pp. 78-86 (2007). 14. Mohammadi, T. Ion-exchanged zeolite X membranes: synthesis and characterisation", Memb. Tech., 2008(3), pp. 9-11 (2008). 15. Ursini, O., Lilla, E., and Montanari, R. The investigation on cationic exchange capacity of zeolites: The use as selective ion trappers in the electrokinetic soil technique", J. Hazard. Mater., 137(2), pp. 1079-1088 (2006). 16. Purna Chandra Rao, G., Satyaveni, S., Ramesh, A., Seshaiah, K., Murthy, K.S.N., and Choudary, N.V. Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite", J. Environ. Manage., 81(3), pp. 265-272 (2006). 17. Yurekli, Y. Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes", J. Hazard. Mater., 309, pp. 53-64 (2016). 1504 M. Anbia and M. Aghaei/Scientia Iranica, Transactions C: Chemistry and ... 26 (2019) 1497{1504 18. Turnes Palomino, G., Otero Are_an, C., and Llop Carayol, M.R. Hydrogen adsorption on the faujasitetype zeolite Mg-X: An IR spectroscopic and thermodynamic study", Appl. Surf. Sci., 256(17), pp. 5281-5284 (2010). 19. Prasanth, K.P., Pillai, R.S., Bajaj, H.C., Jasra, R.V., Chung, H.D., Kim, T.H., and Song, S.D. Adsorption of hydrogen in nickel and rhodium exchanged zeolite X". Int. J. Hydrogen Energy, 33(2), pp. 735-745 (2008). 20. Silva, J.A.C., Schumann, K., and Rodrigues, A.E. Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite", Microporous Mesoporous Mater., 158(0), pp. 219-228 (2012). 21. Jayaraman, A., Yang, R., Cho, S.H., Bhat, T.G., and Choudary, V. Adsorption of nitrogen, oxygen and argon on Na-CeX zeolites", Adsorption, 8(4), pp. 271- 278 (2002). 22. Chen, C., Park, D.W., and Ahn, W.S. CO2 capture using zeolite 13X prepared from bentonite", Appl. Surf. Sci., 292(0), pp. 63-67 (2014). 23. Are_ Pour, A., Sharifnia, S., NeishaboriSalehi, R., and Ghodrati, M. Performance evaluation of clinoptilolite and 13X zeolites in CO2 separation from CO2/CH4 mixture", J. Nat. Gas Sci. Eng., 26, pp. 1246-1253 (2015). 24. Songolzadeh, M., Soleimani, M., and Takht Ravanchi, M. Using modi_ed Avrami kinetic and two component isotherm equation for modeling of CO2/N2 adsorption over a 13X zeolite bed", J. Nat. Gas Sci. Eng., 27, Part 2, pp. 831-841 (2015). 25. Pillai, R.S., Peter, S.A., and Jasra, R.V. CO2 and N2 adsorption in alkali metal ion exchanged X-Faujasite: Grand canonical Monte Carlo simulation and equilibrium adsorption studies", Microporous Mesoporous Mater., 162, pp. 143-151 (2012). 26. Chen, C., Kim, S.S., Cho, W.S., and Ahn, W.S. Polyethylenimine-incorporated zeolite 13X with mesoporosity for post-combustion CO2 capture", Appl. Surf. Sci., 332, pp. 167-171 (2015). 27. Creamer, A.E. and Gao, B., Carbon Dioxide Capture: An E_ective Way to Combat Global Warming, Springer International Publishing (2015). 28. Anbia, M. and Hoseini, V. Enhancement of CO2 adsorption on nanoporous chromium terephthalate (MIL-101) by amine modi_cation", J. Nat. Gas Chem., 21(3), pp. 339-343 (2012). 29. Anbia, M., Hoseini, V., and Mandegarzad, S. Synthesis and characterization of nanocomposite MCM-48- PEHA-DEA and its application as CO2 adsorbent", Korean J. Chem. Eng., 29(12), pp. 1776-1781 (2012). 30. Salehi, S., Anbia, M., Hosseiny, A.H., and Sepehrian, M. Enhancement of CO2 adsorption on polyethylenimine functionalized multiwalled carbon nanotubes/Cd-nanozeolite composites", J. Mol. Struct., 1173, pp. 792-800 (2018). 31. Bezerra, D.P., Silva, F.W.M.d., Moura, P.A.S.d., Sousa, A.G.S., Vieira, R.S., Rodriguez-Castellon, E., and Azevedo, D.C.S. CO2 adsorption in aminegrafted zeolite 13X", Appl. Surf. Sci., 314(0), pp. 314- 321 (2014). 32. Sterte, J., Hedlund, J., and Tosheva, L. Advanced materials and applications", In Impact of Zeolites and other Porous Materials on the New Technologies at the Beginning of the New Millennium, pp. 1437-1570, Elsevier Science (2002). 33. Gardziella, A., Pilato, L.A., and Knop, A., Phenolic Resins: Chemistry, Applications, Standardization, Safety and Ecology, Springer (2000). 34. Sulaymon, A.H. and Mahdi, A.S. Spherical zeolitebinder agglomerates", Chem. Eng. Res. Des., 77(4), pp. 342-350 (1999). 35. Zhang, X., Tang, D., Zhang, M., and Yang, R. Synthesis of NaX zeolite: Inuence of crystallization time, temperature and batch molar ratio SiO2/Al2O3 on the particulate properties of zeolite crystals", Powder Technol., 235(0), pp. 322-328 (2013). 36. Treacy, J. and Higgins, J.B., Collection of Simulated XRD Powder Patterns for Zeolites, Elsevier Science (2001).