1. Paydar, M.M., and Saidi-Mehrabad, M. A hybrid genetic algorithm for dynamic virtual cellular manufacturing with supplier selection", The International Journal of Advanced Manufacturing Technology, 92(5{ 8), pp. 3001{3017 (2017). 2. Suh, N.P., The Principles of Design, Oxford University Press on Demand, 6 (1990). 3. Barclay, I., Dann, Z., and Holroyd, P., New Product Development, Routledge (2010). 4. Pahl, G. and Beitz, W., Engineering Design: A Systematic Approach, Springer Science & Business Media (2013). 5. Cooper, R.G. Stage-gate systems: a new tool for managing new products", Business Horizons, 33(3), pp. 44{54 (1990). 6. Jafarian, M. and Bashiri, M. Supply chain dynamic con_guration as a result of new product development", Applied Mathematical Modelling, 38(3), pp. 1133{1146 (2014). 7. Behnia, B., Mahdavi, I., Shirazi, B., and Paydar, M.M. A bi-objective mathematical model for cellular manufacturing system applying evolutionary algorithms", Scientia Iranica, 26(4), pp. 2541{2560 (2019). 8. Mahdavi, I., Aalaei, A., Paydar, M.M., and Solimanpur, M. Production planning and cell formation in dynamic virtual cellular manufacturing systems with worker exibility", International Conference on Computers & Industrial Engineering, IEEE, pp. 663{ 667 (2009). 9. Mahdavi, I., Aalaei, A., Paydar, M.M., and Solimanpur, M. Multi-objective cell formation and production planning in dynamic virtual cellular manufacturing systems", International Journal of Production Research, 49(21), pp. 6517{6537 (2011). 10. Han, W., Wang, F., and Lv, J. Virtual cellular multiperiod formation under the dynamic environment", IERI Procedia, 10, pp. 98{104 (2014). 11. Paydar, M.M., and Saidi-Mehrabad, M. Revised multi-choice goal programming for integrated supply chain design and dynamic virtual cell formation with fuzzy parameters", International Journal of Computer Integrated Manufacturing, 28(3), pp. 251{265 (2015). 12. Baykasoglu, A. and Gorkemli, L. Dynamic virtual cellular manufacturing through agent-based modelling", International Journal of Computer Integrated Manufacturing, 30(6), pp. 564{579 (2017). 13. Rabbani, M., Keyhanian, S., Manavizadeh, N., and Farrokhi-Asl, H. Integrated dynamic cell formationproduction planning: A new mathematical model", Scientia Iranica, 24(5), pp. 2550{2566 (2017). 14. Rabbani, M., Farrokhi-Asl, H., and Ravanbakhsh, M. Dynamic cellular manufacturing system considering machine failure and workload balance", Journal of Industrial Engineering International, 15(1), pp. 25{40 (2019). 15. Ulrich, K.T., Product Design and Development, Tata McGraw-Hill Education (2003). 16. Lim, W.S., and Tang, C.S. Optimal product rollover strategies", European Journal of Operational Research, 174(2), pp. 905{922 (2006). 17. Koca, E., Souza, G.C., and Druehl, C.T. Managing product rollovers", Decision Sciences, 41(2), pp. 403{ 423 (2010). A. Rostami et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 2093{2107 2107 18. Beauregard, Y., Polotski, V., Bhuiyan, N., and Thomson, V. Optimal utilisation level for lean product development in a multitasking context", International Journal of Production Research, 55(3), pp. 795{818 (2017). 19. Na_si, M., Wiktorsson, M., and Rosio, C. Manufacturing involvement in new product development: An explorative case study in heavy automotive component assembly", Procedia CIRP, 50, pp. 65{69 (2016). 20. Chang, C.T. Multi-choice goal programming with utility functions", European Journal of Operational Research, 215(2), pp. 439{445 (2011).