The effects of bubble detachment shape on rising bubble hydrodynamics

Document Type : Article

Authors

1 Department of Chemical & Petroleum Engineering , Sharif University of Technology, Tehran, P.O. Box 11155-9567, Iran.

2 Chemical & Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran

3 Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Abstract

Local velocities and aspect ratios of rising bubbles were measured to investigate the effects of bubble detachment shape on rising bubble hydrodynamics. Two types of capillary were employed to generate bubbles of identical volume: one glassy nozzle aligned vertically and the other stainless steel needle aligned horizontally. Horizontally injected bubbles had spherical initial shape and their values of aspect ratio slightly fluctuated around unity. However, vertically injected bubbles had surface-stretched initial shape and their values of aspect ratios decreased sharply from 1.1 to 0.65. There is a notable correspondence between the variation of local velocities and aspect ratios which reflects the relevance of the detachment shape of the bubbles to their surface energy. Correlations of Taylor & Acrivos and Vakhrushev & Efremov for aspect ratio were examined by experimental data.

Keywords

Main Subjects


1. Ulaganathan, V., Krzan, M., Lot_, M., et al. In- uence of _-lactoglobulin and its surfactant mixtures on velocity of the rising bubbles", Colloids Surfaces A Physicochem. Eng. Asp., 460, pp. 361-368 (2014). DOI:10.1016/j.colsurfa.2014.04.041 2. Lot_, M., Karbaschi, M., Javadi, A., et al. Dynamics of liquid interfaces under various types of external perturbations", Curr. Opin. Colloid Interface Sci., 19, pp. 309-319 (2014). DOI:10.1016/j.cocis.2014.04.006 3. Dukhin, S.S., Kovalchuk, V.I., Gochev, G.G., et al. Dynamics of rear stagnant cap formation at the P. Fayzi et al./Scientia Iranica, Transactions C: Chemistry and ... 26 (2019) 1546{1554 1553 surface of spherical bubbles rising in surfactant solutions at large reynolds numbers under conditions of small Marangoni number and slow sorption kinetics", Adv. Colloid Interface Sci., 222, pp. 260-274 (2015). DOI:10.1016/j.cis.2014.10.002 4. Seddigh, E., Azizi, M., Sani, E.S., et al. Investigation of poly(ether-b-amide)/nanosilica membranes for CO2/CH4 separation", Chinese J. Polym. Sci., 32, pp. 402-410 (2014). DOI:10.1007/s10118-014-1416-y 5. Paul, N., Schulz, J.M., and Kraume, M. Fluid dynamics of droplets as a useful tool to determine coverage and adsorption kinetics of surfactants", Chem. Eng. Technol., 38, pp. 1979-1984 (2015). DOI:10.1002/ceat.201500137 6. Liu, Z., Herman, C., and Kim, J. Heat transfer and bubble detachment in subcooled pool boiling from a downward-facing microheater array in a nonuniform electric _eld", Ann. N. Y. Acad. Sci., 1161, pp. 182- 191 (2009). DOI:10.1111/j.1749-6632.2008.04331 x. 7. Matavos-Aramyan S., Ghazi-MirSaeed M., Saeedi- Emadi, A., et al. Inuence of the process parameters on the foam fractionation treatment of olive mill wastewater", Sci. Iran., 23, pp. 2820-2827 (2016). DOI:10.24200/sci.2016.3992 8. Papadopoulou, V., Tang, M.-X., Balestra, C., et al. Circulatory bubble dynamics: From physical to biological aspects", Adv. Colloid Interface Sci., 206, pp. 239-249 (2014). DOI:10.1016/j.cis.2014.01.017 9. Zawala, J., Kosior, D., and Malysa, K. Formation and inuence of the dynamic adsorption layer on kinetics of the rising bubble collisions with solution/gas and solution/ solid interfaces", Adv. Colloid Interface Sci., 222, pp. 765-778 (2015). DOI:10.1016/j.cis.2014.07.013 10. Shahid, M., Fan, C., and Pashley, R.M. Insight into the bubble column evaporator and its applications", Int. Rev. Phys. Chem., 35, pp. 143-185 (2016). DOI:10.1080/0144235X.2016.1147144 11. Sa_man, P.G. and Sears, W.R. On the rise of small air bubbles in water", J. Fluid Mech., 1, p. 249 (1956). DOI:10.1017/S0022112056000159 12. Dukhin, S.S., Miller, R., and Loglio, G., Physicochemical Hydrodynamics of Rising Bubble, Elsevier, pp. 367-432 (1998). DOI:10.1016/S1383- 7303(98)80025-2 13. Shoghl, S.N., Bahrami, M., and Moraveji, M.K. Experimental investigation and CFD modeling of the dynamics of bubbles in nanouid pool boiling", Int. Commun. Heat Mass Transf., 58, pp. 12-24 (2014). DOI:10.1016/j.icheatmasstransfer.2014.07.027 14. Chakraborty, I., Biswas, G., Polepalle, S., et al. Bubble formation and dynamics in a quiescent highdensity liquid", AIChE J., 61, pp. 3996-4012 (2015). DOI:10.1002/aic.14896 15. Azizi, M., Ramazani, A., Etemadi, H., et al. Simulation of viscoelastic uid ows in expansion geometry using _nite volume approach", Chinese J. Polym. Sci., 31, pp. 1599-1612 (2013). DOI:10.1007/s10118-013- 1336-2 16. Carvajal, D., Carlesi, C., Mel_endez-Vejar, V., et al. Numerical simulation of single-bubble dynamics in high-viscosity ionic liquids using the levelset method", Chem. Eng. Technol., 38, pp. 473-481 (2015). DOI:10.1002/ceat.201400449 17. Premlata, A.R., Tripathi, M.K., and Sahu, K.C. Dynamics of rising bubble inside a viscositystrati _ed medium", Phys. Fluids., 27 072105 (2015). DOI:10.1063/1.4927521 18. Ohta, M., Tsuji, M., Yoshida, Y., et al. The transient dynamics of a small bubble rising in a low Morton number regime", Chem. Eng. Technol., 31, pp. 1350- 1357 (2008). DOI:10.1002/ceat.200700507 19. Tomiyama, A., Celata, G.P., Hosokawa, S., et al. Terminal velocity of single bubbles in surface tension force dominant regime", Int. J. Multiph. Flow., 28, pp. 1497-1519 (2002). DOI:10.1016/S0301-9322(02)00032- 0 20. Krzan, M. and Malysa, K. Pro_les of local velocities of bubbles in n-butanol, n-hexanol and n-nonanol solutions", Colloids Surfaces A Physicochem. Eng. Asp., 207, pp. 279-291 (2002). DOI:10.1016/S0927- 7757(02)00163-2 21. Ziegenhein, T. and Lucas, D. Observations on bubble shapes in bubble columns under di_erent ow conditions", Exp. Therm. Fluid Sci., 85, pp. 248-256 (2017). DOI:10.1016/j.expthermusci.2017.03.009 22. Dukhin, S.S., Lot_, M., Kovalchuk, V.I., et al. Dynamics of rear stagnant cap formation at the surface of rising bubbles in surfactant solutions at large Reynolds and Marangoni numbers and for slow sorption kinetics", Colloids Surfaces A Physicochem. Eng. Asp., 492, pp. 127-137 (2016). DOI:10.1016/j.colsurfa.2015.12.028 23. Malysa, K., Krasowska, M., and Krzan, M. In- uence of surface active substances on bubble motion and collision with various interfaces", Adv. Colloid Interface Sci., 114, pp. 205-225 (2005). DOI:10.1016/j.cis.2004.08.004 24. Bastani, D., Fayzi, P., Lot_, M., et al. CFD simulation of bubble in ow _eld: Investigation of dynamic interfacial behaviour in presence of surfactant molecules", Colloids Interface Sci. Commun., 27, pp. 1-10 (2018). DOI:10.1016/j.colcom.2018.09.001 25. Lot_, M., Bastani, D., Ulaganathan, V., et al. Bubble in ow _eld: A new experimental protocol for investigating dynamic adsorption layers by using capillary pressure tensiometry", Colloids Surfaces A Physicochem. Eng. Asp., 460, pp. 369-376 (2014). DOI:10.1016/j.colsurfa.2013.11.011 26. Clift, R., Grace, J.R., and Weber, M.E., Bubbles, Drops, and Particles, Academic Press, 2005 (Accessed: April 25, 2017). 1554 P. Fayzi et al./Scientia Iranica, Transactions C: Chemistry and ... 26 (2019) 1546{1554 27. Ellingsen, K. and Risso, F. On the rise of an ellipsoidal bubble in water: Oscillatory paths and liquidinduced velocity", J. Fluid Mech., 440, pp. 235-268 (2001). DOI:10.1017/S0022112001004761 28. Bhaga, D. and Weber, M.E. Bubbles in viscous liquids: Shapes, wakes and velocities", J. Fluid Mech., 105, pp. 61-85 (1981). DOI:10.1017/S002211208100311X 29. Wu, M. and Gharib, M. Experimental studies on the shape and path of small air bubbles rising in clean water", Phys. Fluids., 14, L49 (2002). DOI:10.1063/1.1485767 30. Celata, G.P., D'Annibale, F., Di Marco, P., et al. Measurements of rising velocity of a small bubble in a stagnant uid in one and two-component systems", Exp. Therm. Fluid Sci., 31, pp. 609-623 (2007). DOI:10.1016/j.expthermusci.2006.06.006 31. Tomiyama, A., Kataoka, I., Zun, I., et al. Drag coe_cients of single bubbles under normal and micro gravity conditions", JSME Int. J. Ser. B., 41, pp. 472- 479 (1998). DOI:10.1299/jsmeb.41.472 32. Vafaei, S., Angeli, P., and Wen, D. Bubble growth rate from stainless steel substrate and needle nozzles", Colloids Surfaces A Physicochem. Eng. Asp., 384, pp. 240-247 (2011). DOI:10.1016/j.colsurfa.2011.03.066 33. Hashmi, A., Yu, G., Reilly-Collette, M., et al. Oscillating bubbles: A versatile tool for lab on a chip applications", Lab Chip., 12, p. 4216 (2012). DOI:10.1039/c2lc40424a 34. Tesa_r, V. Shape oscillation of microbubbles", Chem. Eng. J., 235, pp. 368-378 (2014). DOI:10.1016/j.cej.2013.09.027 35. Krzan, M., Zawala, J., and Malysa, K. Development of steady state adsorption distribution over interface of a bubble rising in solutions of n-alkanols (C5, C8) and n-alkyl trimethyl ammonium bromides (C8, C12, C16)", Colloids Surfaces A Physicochem. Eng. Asp., 298, pp. 42-51 (2007). DOI:10.1016/j.colsurfa.2006.12.056 36. Taylor, T.D. and Acrivos, A. On the deformation and drag of a falling viscous drop at low Reynolds number", J. Fluid Mech., 18, pp. 466-476 (1964). DOI:10.1017/S0022112064000349 37. Vakhrushev, I.A. and Efremov, G.I. Interpolation formula for computing the velocities of single gas bubbles in liquids", Chem. Technol. Fuels Oils., 6, pp. 376-379 (1970). DOI:10.1007/BF01171684 38. Marmottant, P. and Hilgenfeldt, S. Controlled vesicle deformation and lysis by single oscillating bubbles", Nature., 423, pp. 153-156 (2003). DOI:10.1038/nature01613 39. Hadamard, J.S. Hydrodynamics - On a question relating to the viscous liquid" [Hydrodynamique-sur une question relative aux liquides visqueux], Comptes Rendus., 154, p. 109 (1912). 40. Dukhin, S.S., Kretzschmar, G., and Miller, R. Thermodynamics and Macro-kinetics of Adsorption, Elsevier (1995). DOI:10.1016/S1383-7303(06)80010-4 41. Saidi, M.H., Taeibi-Rahni, M., Asadi, B., et al. Computational simulation of marangoni convection under microgravity condition", Sci. Iran., Trans. BMechanical Eng., 16, pp. 513-524 (2009).