References
1. Omidi, O. and Lot, V. Seismic plastic-damage analysis
of mass concrete blocks in arch dams including
contraction and peripheral joints", Soil Dyn. Earth.
Eng., 95, pp. 118{137 (2017).
2. Lubliner, J., Oliver, J., Oller, S., et al. A plasticdamage
model for concrete", Int. J. Sol. Stru., 25(3),
pp. 299{326 (1989).
3. Guanglun, W., Pekau, O.A., Chuhan, Z., et al. Seismic
fracture analysis of concrete gravity dams based
on nonlinear fracture mechanics", Eng. Frac. Mech.,
65, pp. 67{87 (2000).
4. Wang, J.T., Jin, A.Y., Du, X.L., et al. Scatter
of dynamic response and damage of an arch dam
subjected to articial earthquake accelerograms", Soil
Dyn. Earth. Eng., 87, pp. 93{100 (2016).
5. Hariri-Ardebili, M.A., Furgani, L., Meghella, M., et
al. A new class of seismic damage and performance
indices for arch dams via ETA method", Eng. Stru.,
110, pp. 145{160 (2016).
6. Hariri-Ardebili, M.A., Mirzabozorg, H., and Kianoush,
R. Comparative study of endurance time and time
history methods in seismic analysis of high arch dams",
Inter. J. Civ. Eng., 12(2), pp. 219{236 (2014).
7. Basili, M. and Nuti, C. A simplied procedure for
base sliding evaluation of concrete gravity dams under
seismic action", Inter. Schol. Resea. Netw., 2011, pp.
1{14 (2011).
8. Akkose, M., Adanur, S., Bayraktar, A., et al. Elastoplastic
earthquake response of arch dams including
uid-structure interaction by the Lagrangian approach",
App. Math. Mod., 32, pp. 2396{2412 (2008).
9. Amina, T.B., Mohamed, B., Andre, L., et al. Fluidstructure
interaction of Brezina arch dam: 3D modal
analysis", Eng. Struc., 84, pp. 19{28 (2015).
10. Khosravi, S. and Mohammad, M.H. Modelling of
concrete gravity dam including dam-water-foundation
rock interaction", World App. Scie. J., 22(4), pp. 538{
546 (2013).
2750 E. Zacchei and J.L. Molina/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2740{2751
11. Demirel, E. Numerical simulation of earthquake excited
dam-reservoirs with irregular geometrics using an
immersed boundary method", Soil Dyn. Earth. Eng.,
73, pp. 80{90 (2015).
12. U.S. Army Corps of Engineers (USACE) Arch dam
design", Engineer Manual 1110-2-2201, Washington,
District of Columbia, United States (1994).
13. Benito, M.B., Navarro, M., Vidal, F., et al. A new
seismic hazard assessment in the region of Andalusia
(Southern Spain)", Bull. Earth. Eng., 8, pp. 739{766
(2010).
14. Yang, J., Jin, F., Wang, J.T., et al. System identi-
cation and modal analysis of an arch dam based on
earthquake response records", Soil Dyn. Earth. Eng.,
92, pp. 109{121 (2017).
15. Garca-Mayordomo, J. and Insua-Arevalo, J.M. Seismic
hazard assessment for the Itoiz dam site (Western
Pyrenees, Spain)", Soil Dyn. Earth. Eng., 31, pp.
1051{1063 (2011).
16. Bommer, J.J. and Acevedo, A.B. The use of real
earthquake accelerograms as input to dynamic analysis",
J. Earth. Eng., 8, pp. 43{91 (2004).
17. Engineering Strong-Motion database (ESM), esm.mi.
ingv.it/
18. Permanent Commission on Earthquake Resistant
Standards (NCSE), Earthquake-resistant construction
standard - General part and construction",
Madrid, Spain (2002).
19. Barbato, M. and Conte, J.P. Spectral characteristics
of non-stationary random processes: Theory and applications
to linear structural models", Prob. Eng. Mech.,
23, pp. 416{426 (2008).
20. Koutsourelakis, P.S. A note on the rst-passage
problem and VanMarcke's approximation - short communication",
Prob. Eng. Mech., 22, pp. 22{26 (2007).
21. Bilici, Y., Bayraktar, A., Soyluk, K., et al. Stochastic
dynamic response of dam-reservoir-foundation systems
to spatially varying earthquake ground motions", Soil
Dyn. Earth. Eng., 29, pp. 444{458 (2009).
22. Koh, H.M., Kim, J.K., and Park, J.H. Fluid-structure
interaction analysis of 3-D rectangular tanks by a
variationally coupled BEM-FEM and comparison with
test results", Earth Eng. Stru. Dyn., 27, pp. 109{124
(1998).
23. Housner, G.W. The dynamic behavior of water
tanks", Bull. Seism. Soc. Am., 53(2), pp. 381{387
(1963).
24. Zheng, X., Ma, Q.W., and Duan, W.Y. Comparison
of dierent iterative schemes for ISPH based on Rankine
source solution", Int. J. Nav. Arch. Oce. Eng., 9,
pp. 390{403 (2017).
25. Qin, J., Chen, B., and Lu, L. Finite element based
viscous numerical wave
ume", Adv. Mech. Eng.,
2013, pp. 1{17 (2013).
26. Seismogenic Source Zones of the Iberian Peninsula
(ZESIS) (2015). http://info.igme.es/zesis
27. International Commission on Large Dams (ICOLD),
Selecting seismic parameters for large dams", Bulletin
No. 148, Paris, France (2016).
28. Brazilian Association of Technical Standards (ABNT)
Project of earthquake resistant structures - Procedure",
ABNT NBR 15421:2006, Rio de Janeiro, Brazil
(2006).
29. Venezuelan Foundation for Seismological Research
(FUNVISIS) Earthquake-resistant buildings - Part
1: Requirements", COVENIN 1756-1:2001, Caracas,
Venezuela (2001).
30. Ministry of Infrastructure and Transport (MIT) Technical
standards for buildings", NTR 2008, Roma, Italy
(2008).
31. Comite Europeen de Normalisation (CEN) Design of
structures for earthquake resistance - Part 1: General
rules, seismic actions and rules for buildings", EN
1998-1:2004, Brussels, Belgium (2004).
32. Barone, G., Lo Iacono F., Navarra, G., et al. A novel
analytical model of power spectral density function
coherent with earthquake response spectra", 1st ECCOMAS
Them. Conf. Unc. Quant. Comp. Sci. Eng.
UNCECOMP 2015, Crete Island, Greece, pp. 1{13
(2015).
33. Barbat, A.H., Orosco, L., Hurtado, J.E., et al.,
Denition of Seismic Action, International Center for
Numerical Methods in Engineering, Seismic Engineering
Monographs, Monograph CIMNE IS-10 (1994).
34. Preumont, A. The generation of spectrum compatible
accelerograms for the design of nuclear power plants",
Earth. Eng. Stru. Dyn., 12, pp. 481{497 (1984).
35. Fergany, E. and Hutchings, L. Demonstration of pb-
PSHA with Ras-Elhekma earthquake, Egypt", NRIAG
J. Astr. Geoph., 6(1), pp. 41{51 (2017).
36. Zacchei, E., Molina, J.L., and Brasil, L.R.F.R.M.
Seismic hazard assessment of arch dams via dynamicmodelling:
an application to the Rules Dam in
Granada, SE Spain", Int. J. Civ. Eng., 2017, pp. 1{10
(2017).
37. Cacciola, P. A stochastic approach for generating
spectrum compatible fully nonstationary earthquakes",
Comp. Stru., 88(15), pp. 889{901 (2010).
38. Der Kiureghian, A. A response spectrum method for
random vibrations", Earthquake Engineering Research
Center, Report No. UCB/EERC-80/15, Berkeley, California
(1980).
39. Chtcot, R. and Brasil, L.R.F.M.R. Seismic analysis
of a shear building model", Proc. XXXVII Ibe. Latin-
Ame. Congr. Comp. Meth. Eng. CILAMCE 2016,
Brasilia, Brazil, pp. 1{12 (2016).
40. Cottone, G. and Di Paola, M. A new representation
of power spectral density and correlation function by
means of factional spectral moments", Prob. Eng.
Mech., 25, pp. 348{353 (2010).
41. Di Paola, M., La Mendola, L., and Navarra, G.
Stochastic seismic analysis of structures with nonlinear
viscous dampers", J. Stru. Eng., 133(10), pp.
1475{1478 (2007).
E. Zacchei and J.L. Molina/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2740{2751 2751
42. Sundararajan, C. An iterative method for the generation
of seismic power spectral density functions", Nucl.
Eng. Des., 61(1), pp. 13{23 (1980).
43. Alembagheri, M. Earthquake damage estimation of
concrete gravity dams using linear analysis and empirical
failure criteria", Soil Dyn. Earth. Eng., 90, pp.
327{339 (2016).
44. U.S. Army Corps of Engineers (USACE), Simplied
analysis of concrete gravity dams including foundation
exibility", Report No. 0704-0188 Washington, District
of Columbia, United States (1989).
45. Joghataie, A. and Dizaji, M.S. Reducing extent
of cracks and increasing time to failure of concrete
gravity dams by optimization of properties of layers
of concrete", Scie. Ira., 21(1), pp. 67{81 (2014).
46. Ghaemian, M., Vafai, A.H., and Karimi, Z. Nonlinear
seismic response of concrete gravity dams due to
foundation fault movement", Scie. Ira., 21(5), pp.
1539{1548 (2014).
47. Sotoudeh, M.A., Ghaemian, M., and Moghadam, A.S.
Determination of limit-states for near-fault seismic
fragility assessment of concrete gravity dams", Scie.
Ira., 98(21), pp. 1{23 (2018).
48. Zacchei, E. and Brasil, L.R.F.R.M. Seismic action on
oil storage tanks: Induced pressures, total response
and state of buckling", Inter. J. Mod. Sim. Petr. Indu.,
10(1), pp. 45{53 (2017).
49. U.S. Army Corps of Engineers (USACE) Theoretical
manual for analysis of arch dams", Technical Report
ITL-93-1, Washington, District of Columbia, United
States (1993).
50. Millan, M.A., Young, Y.L., and Prevost, J.K. The
eects of reservoir geometry on the seismic response of
gravity dams. Part 1: Analytical model", Earth. Eng.
Stru. Dyn., 00, pp. 1{6 (2002).
51. Comite Europeen de Normalisation (CEN) Design of
structures for earthquake resistance - Part 4: Silos,
tanks and pipelines", EN 1998-4:2006, Brussels, Belgium
(2006).
52. Wolfram Mathematica (Version 11 Student Edition),
Wolfram Research, Inc (2017).
53. Clough, R.W. and Penzien, J., Dynamics of Structures,
3rd Ed., McGraw-Hill, New York (2003).