References:
[1] Neville, A.M. “Properties of Concrete, Fourth and Final Edition Standards”, Prentice-Hall, Incorporated, Englewood Cliffs, NJ USA (1996).
[2] MacGregor, J.G. “Reinforced concrete: Mechanics and design”, Prentice-Hall, Incorporated, Englewood Cliffs, NJ USA (1992).
[3] Dhinakaran, G., and Sreekanth, B. “Physical, Mechanical and Durability properties of Ternary blend Concrete”. Scientia Iranica, (), -. doi: 10.24200/sci.2017.4210. (2017).
[4] Tuutti, K. “Service life of structures with regard to corrosion of embedded steel”, Special Publication, 65, pp. 223-236 (1980).
[5] Priyanka, C., Vijayalakshmi, B., Nagavalli, M., and Dhinakaran, G. “Strength and Durability Studies on High Volume Readymade Ultrafine Slag based High Strength Concrete”.Scientia Iranica, (), -. doi: 10.24200/sci.2018.20202. (2018).
[6] Shayanfar, M.A. Barkhordari, M. A., and Ghanooni-Bagha, M. “Effect of longitudinal rebar corrosion on the compressive strength reduction of concrete in reinforced concrete structure”, Advances in Structural Engineering, 19(6), pp. 897-907 (2016).
[7] Shayanfar, M.A. Barkhordari, M.A. and Ghanooni-Bagha, M. “Probability calculation of rebars corrosion in reinforced concrete using css algorithms”. Journal of Central South University, 22(8), pp. 3141-3150 (2015).
[8] Ghanooni-Bagha, M., Shayanfar, M. A., Shirzadi-Javid, A. A., and Ziaadiny, H. “Corrosion-induced reduction in compressive strength of self-compacting concretes containing mineral admixtures”, Construction and Building Materials, 113 (1), pp. 221-228 (2016).
[9] Ghanooni-Bagha, M. Shayanfar, M.A. Reza-zadeh, O. and Zabihi-Samani., M. “The effect of materials on the reliability of reinforced concrete beams in normal and intense corrosions”, Journal of EKSPLOATACJA I NIEZAWODNOSC, 19(3), pp. 393-402 (2017).
[10] Rahmani, K., Ghaemian, M., Hosseini, A. (2017). Experimental study of the effect of water to cement ratio on mechanical and durability properties of Nano-silica concretes with Polypropylene fibers. Scientia Iranica, (), -. doi: 10.24200/sci.2017.5077.1079
[11] Ismail, M. Toumi, A. François, R. and Gagné, R. “Effect of crack opening on the local diffusion of chloride in cracked mortar samples”, Cement and concrete research, 38(8), pp. 1106-1111 (2008).
[12] Ismail, M. Toumi, A. Francois, R. and Gagné, R. “Effect of crack opening on the local diffusion of chloride in inert materials”, Cement and Concrete Research, 34(4), pp: 711-716 (2004).
[13] Shayanfar, M.A. Barkhordari, M.A. and Ghanooni-Bagha, M. “Estimation of Corrosion Occurrence in RC Structure Using Reliability Based PSO Optimization”. Periodica Polytechnica. Civil Engineering, 59(4), pp. 531-543 (2015).
[14] Andrade, C. Alonso, C. and Molina, F.J. “Cover cracking as a function of bar corrosion: Part I-Experimental test”, Materials and structures, 26(8), pp. 453-464 (1993).
[15] Suryavanshi, A.K. Swamy, R.N. and Cardew, G.E. “Estimation of diffusion coefficients for chloride ion penetration into structural concrete”, Materials Journal, 99(5), pp. 441-449 (2002).
[16] Aldea, C.M. Shah, S.P. and Karr, A. “Effect of cracking on water and chloride permeability of concrete”, Journal of materials in civil engineering, 11(3), pp.181-187 (1999).
[17] Conciatori, D. Sadouki, H. and Brühwiler, E. “Capillary suction and diffusion model for chloride ingress into concrete”, Cement and Concrete Research, 38(12), pp. 1401-1408 (2008).
[18] Djerbi, A. Bonnet, S. Khelidj, A. and Baroghel-Bouny, V. “Influence of traversing crack on chloride diffusion into concrete”, Cement and Concrete Research, 38(6), pp. 877-883 (2008).
[19] Jang, S.Y. Kim, B.S. and Oh, B.H. “Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests”, Cement and Concrete Research, 41(1), pp. 9-19 (2011).
[20] Wang, L. and Ueda, T. “Mesoscale modelling of the chloride diffusion in cracks and cracked concrete”, Journal of Advanced Concrete Technology, 9(3), pp. 241-249 (2011).
[21] Marsavina, L. Audenaert, K. De Schutter, G. Faur, N. and Marsavina, D. “Experimental and numerical determination of the chloride penetration in cracked concrete”, Construction and Building Materials, 23(1), pp. 264-274 (2009).
[22] Kato, E. Kato, Y. and Uomoto, T. “Development of simulation model of chloride ion transportation in cracked concrete”, Journal of Advanced Concrete Technology, 3(1), pp. 85-94 (2005).
[23] Otieno, M. Beushausen, H. and Alexander, M. “Chloride-induced corrosion of steel in cracked concrete–Part I: Experimental studies under accelerated and natural marine environments”, Cement and Concrete Research, 79, pp. 373-385 (2016).
[24] Otieno, M. Beushausen, H. and Alexander, M. “Chloride-induced corrosion of steel in cracked concrete—Part II: Corrosion rate prediction models”, Cement and concrete Research, 79, pp. 386-394 (2016).
[25] Wang, J., Basheer, P. M., Nanukuttan, S. V., Long, A. E., and Bai, Y. Influence of service loading and the resulting micro-cracks on chloride resistance of concrete. Construction and Building Materials, 108, pp. 56-66 (2016).
[26] Leung, C.K. and Hou, D. “Numerical simulation of chloride-induced corrosion initiation in reinforced concrete structures with cracks”, Journal of Materials in Civil Engineering, 27(3), pp. 04014122 (2014).
[27] Crank, J. “The mathematics of diffusion”, Oxford university press, Oxford, England (1979).
[28] Poulsen, E. and Mejlbro, L. “Diffusion of chloride in concrete: theory and application”. CRC Press, Boca Raton, FL, USA (2010).
[29] Bentz, D.P. Garboczi, E.J. Lu, Y. Martys, N. Sakulich, A.R. and Weiss, W.J. “Modeling of the influence of transverse cracking on chloride penetration into concrete”, Cement and Concrete Composites, 38, pp. 65-74 (2013).
[30] Comsol Multiphysics. See Wikipedia, Bluebook, https://en.wikipedia.org/wiki/COMSOL_Multiphysics (History), “Navier-Stokes Equations”, Cyclopedia (2016).
[31] Jin, W.L. Yan, Y.D. and Wang, H.L. “Chloride diffusion in the cracked concrete”, Fracture Mechanics of Concrete and Concrete Structures—Assessment, Durability, Monitoring and Retrofitting of Concrete Structures, pp. 880-886 (2010).