Gene expression programming models for liquefaction-induced lateral spreading

Document Type : Article

Authors

1 School of Engineering, Persian Gulf University, Bushehr, Iran

2 Civil Engineering Group, Islamic Azad University, Bushehr, Iran

Abstract

Lateral spreading is one of the most significant destructive and catastrophic phenomena associated with liquefaction caused by earthquake and can impose very serious damages to structures and engineering facilities. The aim of this study is to evaluate liquefaction induced lateral spreading and finding new relations using gene expression programming (GEP) that is a new and developed generation of genetic algorithms approaches. Since there are complicated, nonlinear and higher order relationships between many factors affecting the lateral spreading, GEP is assumed to be capable of finding complex and accurate relationships between these factors. This study includes three main stages: (i) compilation of available database (484 data), (ii) dividing data into training and testing categories, and (iii) building new models and propose new relationships to predict ground displacement in free face, gentle slope and general ground conditions. The results of modeling each of the different ground conditions are presented in the form of mathematical equations. At the end, the final GEP models for 3 different cases of ground conditions are compared with multiple linear regression (MLR) and other published models. The statistical parameters indicate the higher accuracy of the GEP models over other relations.

Keywords

Main Subjects


References
1. Bartlett, S.F. and Youd, T.L., Empirical Analysis
of Horizontal Ground Displacement Generated
by Liquefaction-Induced Lateral Spreads, US National
Center for Earthquake Engineering Research
(NCEER) (1992).
2. Javadi, A.A., Rezania, M., and Nezhad, M.M.
Evaluation of liquefaction induced lateral displacements
using genetic programming", Comput.
Geotech., 33(4{5), pp. 222{233 (2006). https://doi.org
/10.1016/j.compgeo.2006.05.001
3. Newmark, N.M. E ects of earthquakes on dams
and embankments", Geotechnique, 15(2), pp. 139{160
(1965). https://doi.org/10.1680/geot.1965.15.2.139
4. Yegian, M.K., Marciano, E.A., and Ghahraman, V.G.
Earthquake-induced permanent deformations: probabilistic
approach", J. Geotech. Eng., 117(1), pp.
35{50 (1991). https://doi.org/10.1061/(ASCE)0733-
9410(1991)117:1(35)
5. Baziar, M.H., Dobry, R., and Elgamal, A., Engineering
Evaluation of Permanent Ground Deformations Due
to Seismically-Induced Liquefaction, US National Center
for Earthquake Engineering Research (NCEER)
(1992).
6. Jibson, R.W. Predicting earthquake-induced landslide
displacements using Newmark's sliding block
analysis", Transp. Res. Rec., 1411, pp. 9{17 (1993).
7. Towhata, I., Sasaki, Y., Tokida, K.I., et al.
Prediction of permanent displacement of lique-
ed ground by means of minimum energy principle",
Soils Found., 32(3), pp. 97{116 (1992).
https://doi.org/10.3208/sandf1972.32.3 97
8. Tokida, K., Matsumoto, H., Azuma, T., et al. Simpli
ed procedure to estimate lateral ground
ow by
soil liquefaction", In Soil Dyn. Earthq. Eng. VI, WIT
Trans. Built Environ., Brebbia ASC and CA, Editor.,
Elsevier, pp. 381{396 (1993).
9. Finn, W.D. Assessment of liquefaction potential and
post-liquefaction behavior of earth structures: developments
1981-1991", Second Int. Conf. Recent Adv.
Geotech. Earthq. Eng. Soil Dyn., University of Missouri
(1991).
A. Keshavarz and H. To ghi/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2704{2718 2717
10. Finn, W.D., Ledbetter, R.H., and Wu, G. Liquefaction
in silty soils: design and analysis", Gr. Fail. under
Seism. Cond., American Society of Civil Engineers
(ASCE), pp. 51{76 (1994).
11. Gu, W.H., Morgenstern, N.R., and Robertson, P.K.
Postearthquake deformation analysis of Wildlife
site", J. Geotech. Eng., 120(2), pp. 274{289 (1994).
https://doi.org/10.1061/(ASCE)0733-9410(1994)
120:2(274)
12. Yasuda, S., Nagase, H., Kiku, H., et al. The
mechanism and a simpli ed procedure for the analysis
of permanent ground displacement due to liquefaction",
Soils Found., 32(1), pp. 149{160 (1992).
https://doi.org/10.3208/sandf1972.32.149
13. Ghasemi-Fare, O. and Pak, A. Numerical investigation
of the e ects of geometric and seismic parameters
on liquefaction-induced lateral spreading",
Soil Dyn. Earthq. Eng., 89, pp. 233{247 (2016).
https://doi.org/10.1016/J.SOILDYN.2016.08.014
14. de la Maza, G., Williams, N., Saez, E., et al.
Liquefaction-induced lateral spread in Lo Rojas,
Coronel, Chile: eld study and numerical modeling",
Earthq. Spectra, 33(1), pp. 219{240 (2017).
https://doi.org/10.1193/012015EQS012M
15. Munter, S.K., Boulanger, R.W., Krage, C.P., et al.
Evaluation of liquefaction-induced lateral spreading
procedures for interbedded deposits: C ark Canal
in the 1999 M7.5 Kocaeli earthquake", Geotech.
Front. 2017, American Society of Civil Engineers, Reston,
VA. pp. 254{266 (2017). https://doi.org/10.1061
/9780784480489.026
16. Boulanger, R.W., Moug, D.M., Munter, S.K., et
al. Evaluating liquefaction and lateral spreading in
interbedded sand, silt, and clay deposits using the cone
penetrometer", Aust. Geomech. J., 51(4), pp. 109{128
(2016).
17. Baziar, M.H. and Saeedi Azizkandi, A. Evaluation of
lateral spreading utilizing arti cial neural network and
genetic programming", Int. J. Civ. Eng., 11(2), pp.
100{111 (2013).
18. Wang, J. and Rahman, M.S. A neural network model
for liquefaction-induced horizontal ground displacement",
Soil Dyn. Earthq. Eng., 18(8), pp. 555{568
(1999). https://doi.org/10.1016/S0267-7261(99)00027-
5
19. Shamoto, Y., Zhang, J.-M., and Tokimatsu, K. New
charts for predicting large residual post-liquefaction
ground deformation", Soil Dyn. Earthq. Eng., 17(7),
pp. 427{438 (1998). https://doi.org/10.1016/S0267-
7261(98)00011-6
20. Zhang, G., Robertson, P.K., and Brachman,
R.W.I. Estimating liquefaction-induced lateral
displacements using the standard penetration
test or cone penetration test", J. Geotech.
Geoenvironmental Eng., 130(8), pp. 861{871 (2004).
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:
8(861)
21. Hamada, M., Yasuda, S., Isoyama, R., et al., Study
on Liquefaction Induced Permanent Ground Displacements,
Association for the Development of Earthquake
Prediction Japan (1986).
22. Youd, T.L. and Perkins, D.M. Mapping of liquefaction
severity index", J. Geotech. Eng., 113(11), pp.
1374{1392 (1987).
23. Bartlett, S.F. and Youd, T.L. Empirical prediction of
liquefaction-induced lateral spread", J. Geotech. Eng.,
121(4), pp. 316{329 (1995).
24. Bardet, J.P., Mace, N., and Tobita, T., Liquefaction-
Induced Ground Deformation and Failure, Paci c
Earthquake Engineering Research Center (PEER)
(1999).
25. Bardet, J.P., Tobita, T., Mace, N., et al. Regional
modeling of liquefaction-induced ground deformation",
Earthq. Spectra, 18(1), pp. 19{46 (2002).
https://doi.org/10.1193/1.1463409
26. Rauch, A.F. and Martin, J.R. EPOLLS model for
predicting average displacements on lateral spreads",
J. Geotech. Geoenvironmental Eng., 126(4), pp. 360{
371 (2000).
27. Youd, T.L., Hansen, C.M., and Bartlett, S.F. Revised
multilinear regression equations for prediction of
lateral spread displacement", J. Geotech. Geoenvironmental
Eng., 128(12), pp. 1007{1017 (2002).
https://doi.org/10.1061/(ASCE)1090-0241(2002)
128:12(1007)
28. Zhang, J. and Zhao, J.X. Empirical models for estimating
liquefaction-induced lateral spread displacement",
Soil Dyn. Earthq. Eng., 25(6), pp. 439{450
(2005). https://doi.org/10.1016/j.soildyn.2005.04.002
29. Zhang, J., Yang, C., Zhao, J.X., et al. Empirical
models for predicting lateral spreading considering the
e ect of regional seismicity", Earthq. Eng. Eng. Vib.,
11(1), pp. 121{131 (2012).
https://doi.org/10.1007/s11803-012-0103-7
30. Kalantary, F., MolaAbasi, H., Salahi, M., et al. Prediction
of liquefaction induced lateral displacements
using robust optimization model", Sci. Iran., 20(2),
pp. 242{250 (2013).
https://doi.org/10.1016/j.scient.2012.12.025
31. Goh, A.T.C. and Zhang, W.G. An improvement
to MLR model for predicting liquefaction-induced
lateral spread using multivariate adaptive regression
splines", Eng. Geol., 170, pp. 1{10 (2014).
https://doi.org/10.1016/j.enggeo.2013.12.003
32. Khoshnevisan, S., Juang, H., Zhou, Y.-G., et al.
Probabilistic assessment of liquefaction-induced lateral
spreads using CPT { Focusing on the 2010{2011
Canterbury earthquake sequence", Eng. Geol., 192,
pp. 113{128 (2015).
https://doi.org/10.1016/J.ENGGEO.2015.04.001
33. Hasancebi, N., Ulusay, R., and  Onder C etin, K. A
new empirical method to predict liquefaction-induced
lateral spread", Eng. Geol. Soc. Territ., 5, Springer International
Publishing, Cham., pp. 1071{1075 (2015).
https://doi.org/10.1007/978-3-319-09048-1 203
2718 A. Keshavarz and H. To ghi/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2704{2718
34. Baziar, M.H. and Ghorbani, A. Evaluation of
lateral spreading using arti cial neural networks",
Soil Dyn. Earthq. Eng., 25(1), pp. 1{9 (2005).
https://doi.org/10.1016/j.soildyn.2004.09.001
35. Kaya, Z. Predicting liquefaction-induced lateral
spreading by using neural network and neuro-fuzzy
techniques", Int. J. Geomech., 16(4), pp. 04015095
(2016).
https://doi.org/10.1061/(ASCE)GM.1943-5622.
0000607
36. Goharriz, M. and Marandi, S.M. An optimized neurofuzzy
group method of data handling system based on
gravitational search algorithm for evaluation of lateral
ground displacements", Int. J. Optim. Civ. Eng., 6(3),
pp. 385{403 (2016).
37. Rezania, M., Faramarzi, A., and Javadi, A.A. An evolutionary
based approach for assessment of earthquakeinduced
soil liquefaction and lateral displacement",
Eng. Appl. Artif. Intell., 24(1), pp. 142{153 (2011).
https://doi.org/10.1016/j.engappai.2010.09.010
38. Mola-Abasi, H. and Shooshpasha, I. Prediction of
liquefaction induced lateral displacements using plynomial
neural networks and genetic algorithms", 15th
World Conf. Earthq. Eng., Lisbon, Portugal (2012).
39. Johari, A., Habibagahi, G., and Nakhaee, M. Prediction
of unsaturated soils e ective stress parameter
using gene expression programming", Sci. Iran., 20(5),
pp. 1433{1444 (2013).
40. Keshavarz, A. and Mehramiri, M. New gene expression
programming models for normalized shear
modulus and damping ratio of sands", Eng. Appl.
Artif. Intell., 45, pp. 464{472 (2015).
https://doi.org/10.1016/j.engappai.2015.07.022
41. Johari, A., Javadi, A.A., and Kaja , H. A geneticbased
model to predict maximum lateral displacement
of retaining wall in granular soil", Sci. Iran., 23(1),
pp. 54{65 (2016).
42. Johari, A. and Nejad, A.H. Prediction of soil-water
characteristic curve using gene expression programming",
Iran. J. Sci. Technol. Trans. Civ. Eng., 39(C1),
pp. 143{165 (2015).
43. Ferreira, C. Gene expression programming: A new
adaptive algorithm for solving problems", Complex
Syst., 13(2), pp. 87{129 (2001).
44. Ferreira, C., Gene Expression Programming: Mathematical
Modeling by an Arti cial Intelligence, Stud.
Comput. Intell. Springer, 2nd, Revis Ed., New York
(2006). https://doi.org/10.1007/3-540-32849-1
45. Ferreira, C. Mutation, transposition, and recombination:
An analysis of the evolutionary dynamics",
6th Jt. Conf. Inf. Sci. 4th Int. Work. Front. Evol.
Algorithms, North Carolina, USA, pp. 614{617 (2002).