A novel procedure for micromechanical characterization of white matter constituents at various strain rates

Document Type : Article

Authors

School of Mechanical Engineering, Sharif University of Technology, Tehran, P.O. Box 145888-9496, Iran

Abstract

Optimal hyperplastic coefficients of the micromechanical constituents of human brain stem were investigated. An evolutionary optimization algorithm was combined with a Finite Element (FE) model of a Representative Volume Element (RVE) to find the optimal material properties of axon and Extra Cellular Matrix (ECM). The tension and compression test results of a previous experiment were used for optimizing the material coefficients and the shear experiment was used for validation of the resulting constitutive model. Periodic Boundary Conditions (PBC) were applied to ensure the symmetry of displacements on the opposite faces of the RVE. The optimization algorithm searched for optimal shear moduli and fiber stiffness of axon and ECM by fitting the average stress in axonal direction. The resulting constitutive model was validated against the shear stress results of the same experiment. The results were in strong agreement with those of the shear test. In addition, we concluded that the instantaneous shear moduli and fiber stiffness of both axon and ECM rise at higher strain rates, and more importantly, the shear modulus ratio of axon to ECM decreases from the value of 10 at low strain rate of 0.5/s to the value of 5 at the strain rate of 30/s.

Keywords


References
1. Wasserman, L., Shaw, T., Vu, M., Ko, C., Bollegala,
D., and Bhalerao, S. An overview of traumatic brain
injury and suicide", Brain Injury, 22(11), pp. 811{819
(2008). DOI: 10.1080/02699050802372166
2. Johnson, V.E., Stewart, W., Smith, D.H. Axonal
pathology in traumatic brain injury", Experimental
Neurology, Special Issue: Axonal Degeneration,
246, pp. 35{43 (2013). DOI:10.1016/j.expneurol.
2012.01.013
3. Arbogast, K. and Margulies, S. A ber-reinforced
composite model of the viscoelastic behavior of the
brainstem in shear", J. Biomech., 32, pp. 865{870
(1999)
4. Arbogast, K.B. and Margulies, S.S. Material characterization
of the brainstem from oscillatory shear
tests", J Biomech, 31, pp. 801{807 (1998).
5. Prange, M.T. and Margulies, S.S. Regional, directional,
and age-dependent properties of the brain
undergoing large deformation", J Biomech Eng, 124,
pp. 244{252 (2002).
6. Budday, S., Sommer, G., Holzapfel, G.A., Steinmann,
P., and Kuhl, E. Viscoelastic parameter identi cation
of human brain tissue", Journal of the Mechanical
Behavior of Biomedical Materials, 74, pp. 463{476,
ISSN 1751-6161 (2017).
7. Miller, K. and Chinzei, K. Mechanical properties of
brain tissue in tension", J. Biomech., 35, pp. 483{490
(2002).
H. Hoursan et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 784{794 793
8. Gefen, A. and Margulies, S. Are in vivo and
in situ brain tissues mechanically similar?", Journal
of Biomechanics, 37, pp. 1339{52 (2004).
10.1016/j.jbiomech.2003.12.032
9. Hrapko, M., Dommelen, J.A.W., Peters, G.W.M.,
and Wismans, J.S.H. The mechanical behavior of
brain tissue: large strain response and constitutive
modeling", Biorheology, 43, pp. 623{636 (2006).
10. Xin, J., Feng, Z., Haojie, M., Ming, S., and King, H. A
comprehensive experimental study on material properties
of human brain tissue", Journal of Biomechanics,
46(16), pp. 2795{2801, ISSN 0021-9290 (2013).
11. Budday, S., Sommer, G., Birkl, C., Langkammer,
C., Haybaeck, J., Kohnert, J., Bauer, M.,
Paulsen, F., Steinmann, P., Kuhl, E., and Holzapfel,
G.A. Mechanical characterization of human brain
tissue", Acta Biomater., 48, pp. 319{340 (2016).
https://doi.org/10.1016/j.actbio.2016.10.036
12. Eslaminejad, A., Hosseini Farid, M., Ziejewski, M.,
Karami, G. Brain Tissue constitutive material models
and the nite element analysis of blast-induced traumatic
brain injury", Scientia Iranica, 25(6), pp. 3141{
3150 (2018). DOI: 10.24200/sci.2018.20888
13. Saboori, P. and Sadegh, A. Material modeling of the
head's subarachnoid space", Scientia Iranica, 18(6),
pp. 1492{1499, ISSN 1026-3098 (2011).
14. Hoursan, H., Ahmadian, M., Barari, A., and Naghibi,
H. Modelling and analysis of the e ect of angular
velocity and acceleration on brain strain eld in traumatic
brain injury", ASME International Mechanical
Engineering Congress and Exposition, Proceedings
(IMECE), 3 (2013). 10.1115/IMECE2013-63053
15. Sha ee, A., Ahmadian, M., Hoursan, H., and Hoviattalab,
M. E ects of linear and rotational acceleration
on human brain", Journal of Mechanical Engineering
Modares, 15, pp. 248{260 (2015).
16. Hoursan, H., Ahmadian, M., Kazemiasfeh, R., and
Barari, A., On the validity extent of linear viscoelastic
models of human brain (2018). 10.25071/10315/35365
17. MacManus, D.B., Pierrat, B., Murphy, J.G., and
Gilchrist, M.D. Region and species dependent mechanical
properties of adolescent and young adult
brain tissue", Scienti c Reports, pp. 2045{2322 (2013).
https://doi.org/10.1038/s41598-017-13727-z
18. Wright, R.M., Post, A., Hoshizaki, B., and Ramesh,
K.T. A multiscale computational approach to estimating
axonal damage under inertial loading of the
head", J Neurotrauma, 30(2), pp. 102{18 (2013). DOI:
10.1089/neu.2012.2418. PubMed PMID: 22992118
19. Goriely, A., Geers, M.G.D., and Holzapfel, G.A.
Mechanics of the brain: perspectives, challenges,
and opportunities", Biomechanics and Modeling in
Mechanobiology, 14, pp. 931{965 (2015). DOI:
10.1007/s10237-015-0662-4
20. Ning, X., Zhu, Q., Lanir, Y., and Margulies, S.S. A
transversely isotropic viscoelastic constitutive equation
for brainstem undergoing nite deformation",
ASME J Biomech Eng, 128(6), pp. 925{933 (2006).
DOI:10.1115/1.2354208
21. Karami, G. and Shankar, S. A multiscale analysis of
the white brain material with axons as bidirectional
oriented bers", SIMULIA Customer Conference, pp.
1{14 (2011).
22. Abolfathi, N., Naik, A., Sotudeh, M., Karami, G.,
and Ziejewski, M. A micromechanical procedure
for characterization of the mechanical properties of
brain white matter", Computer Methods in Biomechanics
and Biomedical Engineering (In Press). DOI:
10.1080/10255840802430587) (2008).
23. Cloots, R.J.H., Dommelen van, J.A.W., Kleiven, S.,
and Geers, M.G.D. Multi-scale mechanics of traumatic
brain injury: predicting axonal strains from head
loads", Biomechanics and Modeling in Mechanobiology,
12(1), pp. 137{150 (2013). DOI: 10.1007/s10237-
012-0387-6
24. Javid, S., Rezaei, A., and Karami, G. A micromechanical
procedure for viscoelastic characterization of
the axons and ECM of the brainstem", Journal of the
Mechanical Behavior of Biomedical Materials, 30, pp.
290{299, ISSN 1751-6161 (2014).
25. Carlsen, R.W. and Daphalapurkar, N.P. The importance
of structural anisotropy in computational
models of traumatic brain injury", Front Neurol, 6(28)
(2015). DOI: 10.3389/fneur.2015.00028. E-Collection
2015. Review. PubMed PMID: 25745414; PubMed
Central PMCID: PMC4333795
26. Latorre, M., De Rosa, E., and Montans, F. Understanding
the need of the compression branch
to characterize hyperelastic materials", International
Journal of Non-Linear Mechanics, 89 (2016).
10.1016/j.ijnonlinmec.2016.11.005
27. Holzapfel, G.A., Gasser, T.C., and Ogden, R.W.
A new constitutive framework for arterial wall mechanics
and a comparative study of material models",
Journal of Elasticity, 61(1), pp. 1{48 (2000).
https://doi.org/10.1023/A:1010835316564
28. Hill, R. Elastic properties of reinforced solids: some
theoretical principles", Journal of the Mechanics and
Physics of Solids, 11(5), pp. 357{372 (1963). DOI:
10.1016/0022-5096(63)90036-x
29. Meaney, D.F. Relationship between structural modeling
and hyperelastic material behavior: application
to CNS white matter", Biomech. Model. Mechanobiol.,
1, pp. 279{293 (2003)
30. Stephane, L. and Stephane, B. An Abaqus toolbox
for calculation of e ective properties of heterogeneous
materials", 10th National Symposium in Calculation of
Structures, CSMA 2011, 9{13 May, Giens (Var) (2011).
794 H. Hoursan et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 784{794
31. Hollister, S.J. and Kikuchi, N. A comparison of
homogenization and standard mechanics analyses for
periodic porous composites", Computational Mechanics,
10(2), pp. 73{95 (1992).
32. Giordano, C., Cloots, R., Dommelen, J., Kleiven, S.,
and Geers, M. The in
uence of anisotropy on brain
injury prediction", J Biomech, 47, pp. 1052{9 (2014).
Doi: 10.1016/j. j biomech. 2013.12.036
33. Atashpaz-Gargari, E. and Lucas, C. Imperialist
competitive algorithm: An algorithm for optimization
inspired by imperialistic competition", IEEE
Congress on Evolutionary Computation, 7, pp. 4661{
4666 (2007).
34. Rashid, B., Destrade, M., and Gilchrist, M.D. Mechanical
characterization of brain tissue in tension at
dynamic strain rates", Journal of the Mechanical Behavior
of Biomedical Materials, 33, pp. 43{54 (2012).
10.1016/j.jmbbm.2012.07.015