Intelligent navigation of a self-fabricated biped robot using a regression controller

Document Type : Article


Robotics Laboratory, Department of Mechanical Engineering, National Institute of Technology, Rourkela-769008, Odisha, India.


With increasing demand towards use of biped robots in industrial automation and other related applications, navigation and path planning has emerged as one of the most challenging research topic over the last few decades. In this paper, a novel navigational controller is designed and implemented in a self-fabricated biped robot. After fabricating the biped equipped with a large set of sensors, a regression controller is implemented in it for obstacle avoidance and path optimization purpose. The obstacle distances detected by the sensory network of the biped are fed as input parameters to the regression controller and the output obtained from the controller is the necessary heading angle required to avoid the obstacles present randomly in the environment. The biped is tested in a simulation environment for obstacle avoidance and target following behaviour. Along with that, to validate the simulation results, a real-time experimental set up is designed under laboratory conditions. The results obtained from both the environments are compared in terms of navigational parameters and a good agreement between them is observed. Being a relatively new area of research, the navigation of bipeds can serve as a pioneer act towards industrial automation.


Main Subjects

1. Vukobratovi_c, M. and Borovac, B. Zero-moment  point-thirty-_ve years of its life", International Journal  of Humanoid Robotics, 1(01), pp. 157{173 (2004).  2. Pa, P.S. and Wu, C.M. Design of a hexapod  robot with a servo control and a man-machine interface",  Robotics and Computer-Integrated Manufacturing,  28(3), pp. 351{358 (2012).  3. Liu, C., Wang, D., and Chen, Q. Central pattern generator  inspired control for adaptive walking of biped  robots", IEEE Transactions on Systems, Man, and  Cybernetics: Systems, 43(5), pp. 1206{1215 (2013).  4. Sahu, C., Kumar, P.B., and Parhi, D.R. An intelligent  path planning approach for humanoid robots using  adaptive particle swarm optimisation", International  Journal on Arti_cial Intelligence Tools, 27(5), p.  1850015 (2018).  5. Sahu, C., Parhi, D.R., and Kumar, P.B. An approach  to optimize the path of humanoids using adaptive ant  colony optimization", Journal of Bionic Engineering,  15(4), pp. 623{635 (2018).  6. Yeon, J.S. and Park, J.H. A fast turning method  for biped robots with foot slip during single-support  phase", IEEE/ASME Transactions on Mechatronics,  19(6), pp. 1847{1858 (2014).  7. Asa, K., Ishimura, K., and Wada, M. Behavior  transition between biped and quadruped walking by  using bifurcation", Robotics and Autonomous Systems,  57(2), pp. 155{160 (2009).  8. Iida, F., Minekawa, Y., Rummel, J., and Seyfarth,  A. Toward a human-like biped robot with compliant  legs", Robotics and Autonomous Systems, 57(2), pp.  139{144 (2009).  9. Rath, A.K., Das, H.C., Parhi, D.R., and Kumar, P.B.  Application of arti_cial neural network for control and  navigation of humanoid robot", Journal of MechanP.  B. Kumar et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 262{272 271  ical Engineering and Sciences, 12(2), pp. 3529{3538  (2018).  10. Rath, A.K., Parhi, D.R., Das, H.C., Muni, M.K., and  Kumar, P.B. Analysis and use of fuzzy intelligent  technique for navigation of humanoid robot in obstacle  prone zone", Defence Technology, 14(6), pp. 677{682  (2018). DOI:  11. Rath, A.K., Parhi, D.R., Das, H.C., and Kumar, P.B.  Behaviour based navigational control of humanoid  robot using genetic algorithm technique in cluttered  environment", Modelling, Measurement and Control  A, 91(1), pp. 32{36 (2018).  12. Rushdi, K., Koop, D., and Wu, C.Q. Experimental  studies on passive dynamic bipedal walking", Robotics  and Autonomous Systems, 62(4), pp. 446{455 (2014).  13. Silva, P., Santos, C.P., Matos, V., and Costa, L. Automatic  generation of biped locomotion controllers using  genetic programming", Robotics and Autonomous  Systems, 62(10), pp. 1531{1548 (2014).  14. Kumar, A., Kumar, P.B., and Parhi, D.R. Intelligent  navigation of humanoids in cluttered environments using  regression analysis and genetic algorithm", Arabian  Journal for Science and Engineering, pp. 1{24 (2018).  15. Kumar, P.B., Mohapatra, S., and Parhi, D.R. An  intelligent navigation of humanoid NAO in the light  of classical approach and computational intelligence",  Computer Animation and Virtual Worlds, p. e1858  (2018).  16. Kumar, P.B., Pandey, K.K., Sahu, C., Chhotray, A.,  and Parhi, D.R. A hybridized RA-APSO approach  for humanoid navigation", In: Nirma University International  Conference on Engineering (NUiCONE),  pp. 1{6 (2017).  17. Kumar, P.B., Sahu, C., and Parhi, D.R. A hybridized  regression-adaptive ant colony optimization  approach for navigation of humanoids in a cluttered  environment", Applied Soft Computing, 68, pp. 565{  585 (2018).  18. Kumar, P.B., Sahu, C., Parhi, D.R., Pandey, K.K.,  and Chhotray, A. Static and dynamic path planning  of humanoids using an advanced regression controller",  Scientia Iranica, 26(1), pp. 375{393 (2019). DOI:  10.24200/SCI.2018.5064.1071  19. Geng, T. Torso inclination enables faster walking  in a planar biped robot with passive ankles", IEEE  Transactions on Robotics, 30(3), pp. 753{758 (2014).  20. Nakamura, Y., Mori, T., Sato, M.A., and Ishii, S.  Reinforcement learning for a biped robot based on  a CPG-actor-critic method", Neural Networks, 20(6),  pp. 723{735 (2007).  21. Cristiano, J., Puig, D., and Garcia, M.A. E_cient  locomotion control of biped robots on unknown sloped  surfaces with central pattern generators", Electronics  Letters, 51(3), pp. 220{222 (2015).  22. Deepak, B.B.V.L. and Parhi, D.R. Control of an  automated mobile manipulator using arti_cial immune  system", Journal of Experimental & Theoretical Arti-  _cial Intelligence, 28(1{2), pp. 417{439 (2016).  23. Pandey, A. and Parhi, D.R. Multiple mobile robots  navigation and obstacle avoidance using minimum  rule based ANFIS network controller in the cluttered  environment", Int J Adv Robot Automation, 1(1), pp.  1{11 (2016).  24. Pandey, A., Sonkar, R.K., Pandey, K.K., and Parhi,  D.R. Path planning navigation of mobile robot with  obstacles avoidance using fuzzy logic controller", In:  IEEE 8th International Conference on Intelligent Systems  and Control (ISCO), pp. 39{41 (2014).  25. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K.,  Harada, K., Yokoi, K., and Hirukawa, H. Biped walking  pattern generation by using preview control of zeromoment  point", In: IEEE International Conference on  Robotics and Automation (ICRA'03), 2, pp. 1620{1626  (2003).  26. Mirjalili, R., Youse_-koma, A., Shirazi, F.A., and  Mansouri, S. Online path planning for SURENA  III humanoid robot using model predictive control  scheme", In IEEE 4th International Conference on  Robotics and Mechatronics (ICROM), pp. 416{421  (2016).  27. Hwang, Y.K. and Ahuja, N. A potential _eld approach  to path planning", IEEE Transactions on  Robotics and Automation, 8(1), pp. 23{32 (1992).  28. Atkinson, A.C. Robust and diagnostic regression  analyses", Communications in Statistics-Theory and  Methods, 11(22), pp. 2559{2571 (1982).  29. Qi, N., Ma, B., Liu, X.E., Zhang, Z., and Ren, D. A  modi_ed arti_cial potential _eld algorithm for mobile  robot path planning", In: 7th World Congress on  Intelligent Control and Automation, (WCICA 2008),  pp. 2603{2607 (2008).  30. Asano, T., Asano, T., Guibas, L., Hershberger, J.,  and Imai, H. Visibility-polygon search and Euclidean  shortest paths", In IEEE 26th Annual Symposium on  Foundations of Computer Science, pp. 155{164 (1985).  31. Bai, S. and Low, K.H. Terrain evaluation and its  application to path planning for walking machines",  Advanced Robotics, 15(7), pp. 729{748 (2001).  32. Kala, R., Shukla, A., and Tiwari, R. Dynamic  environment robot path planning using hierarchical  evolutionary algorithms", Cybernetics and Systems:  An International Journal, 41(6), pp. 435{454 (2010).  33. Singh, M.K., Parhi, D.R., and Pothal, J.K. ANFIS  approach for navigation of mobile robots", In: International  Conference on Advances in Recent Technologies  in Communication and Computing (ARTCom'09), pp.  727{731 (2009).  34. Parhi, D.R. and Singh, M.K. Navigational strategies  of mobile robots: a review", International Journal of  Automation and Control, 3(2{3), pp. 114{134 (2009).  35. Parhi, D.R. and Singh, M.K. Real-time navigational  control of mobile robots using an arti_cial neural  network", Proceedings of the Institution of Mechanical  Engineers, Part C: Journal of Mechanical Engineering  Science, 223(7), pp. 1713{1725 (2009).  272 P.B. Kumar et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 262{272  36. Mohanty, P.K. and Parhi, D.R. Optimal path planning  for a mobile robot using cuckoo search algorithm",  Journal of Experimental & Theoretical Arti_cial Intelligence,  28(1{2), pp. 35{52 (2016).  37. Parhi, D.R. and Mohanty, P.K. IWO-based adaptive  neuro-fuzzy controller for mobile robot navigation in  cluttered environments", The International Journal  of Advanced Manufacturing Technology, 83(9{12), pp.  1607{1625 (2016).  38. Mohanty, P.K. and Parhi, D.R. A new intelligent  motion planning for mobile robot navigation using  multiple adaptive neuro-fuzzy inference system", Applied  Mathematics & Information Sciences, 8(5), pp.  2527{2535 (2014).  39. Sanjuan, J., Serje, D., and Pacheco, J. Closed form  solution for direct and inverse kinematics of a US-RSRPS  2-DOF parallel robot", Scientia Iranica, 25(4),  pp. 2144{2154 (2018).  40. Korayem, M.H., Yousefzadeh, M., and Manteghi, S.  Tracking control and vibration reduction of exible  cable-suspended parallel robots using a robust input  shaper", Scientia Iranica, Transaction B, Mechanical Engineering, 25(1), pp. 230{252 (2018).