Studying buckling of composite rods made of hybrid carbon fiber/carbon nanotube-reinforced polyimide using multi-scale FEM

Document Type : Article


1 Department of Mechanical Engineering, University of Guilan, Rasht, P.O. Box 3756, Iran.

2 Department of Engineering Science, Faculty of Technology and Engineering, East of Guilan, University of Guilan, P.C. 44891-63157, Rudsar-Vajargah, Iran.


In this paper, the buckling behavior of rods made of carbon fiber/carbon nanotube-reinforced polyimide (CF/CNT-RP) under the action of axial load is investigated based on a multiscale finite element method. A dual-step procedure is first adopted to couple the influences of micro- and nano-scale in order to obtain the equivalent elastic properties of CF/CNT-RP for various volume fractions of CF and CNT. The interphase effect between CNTs and the polymer matrix is taken into consideration. Also, dispersion of CF/CNT into the polymer matrix is assumed to be random. Then, rods with square and circular cross sections are considered whose stability characteristics are analyzed. The finite element modeling is performed using two models including a 3D brick model and a 2D beam model. Selected numerical results are given to study the effects of volume fraction of CNT/CF, interphase and geometrical properties on the axial buckling response of multiscale composite rods.


Main Subjects

1. Bekyarova, E., Thostenson, E.T., Yu, A., Kim, H.,  Gao, J., Tang, J., Hahn, H. T., Chou, T.W., Itkis,  M.E., and Haddon, R.C. Multiscale carbon nanotubecarbon  _ber reinforcement for advanced epoxy composites",  Langmuir, 23, pp. 3970{3974 (2007).  2. Kepple, K.L., Sanborn, G.P., Lacasse, P.A., Gruenberg,  K.M., and Ready, W.J. Improved fracture  toughness of carbon _ber composite functionalized  with multi walled carbon nanotubes", Carbon, 46, pp.  2026{2033 (2008).  3. Sawi, I.E., Olivier, P.A., Demont, P., and Bougherara,  H. Processing and electrical characterization of a unidirectional  CFRP composite_lled with double walled  carbon nano-tubes", Compos. Sci. Technol., 73, pp.  19{26 (2012).  4. Tehrani, M., Safdari, M., Boroujeni, A.Y., Razavi,  Z., Case, S.W., Dahmen, K., Garmestani, H., and  Al-Haik, M.S. Hybrid carbon _ber/carbon nanotube  composites for structural damping applications", Nanotechnology,  24, p. 155704 (2013).  5. Alipour Skandani, A. and Al-Haik, M. Viscoplastic  characterization and modeling of hybrid carbon  _ber/carbon nanotubes reinforced composites", Compos.  Part B, 99, pp. 63{74 (2016).  6. Pal, G. and Kumar, S. Multiscale modeling of e_ective  electrical conductivity of short carbon _ber-carbon  nanotube-polymer matrix hybrid composites", Mater.  Des., 89, pp. 129{136 (2016).  7. Zhou, H.W., Mishnaevsky Jr., L., Yi, H.Y., Liu,  Y.Q., Hua, X., Warrier, A., and Dai, G.M. Carbon  _ber/carbon nanotube reinforced hierarchical composites:  E_ect of CNT distribution on shearing strength",  Compos. Part B, 88, pp. 201{211 (2016).  8. Mittal, G., Dhand, V., Rhee, K.Y., Park, S.-J.,  and Lee, W.R. A review on carbon nanotubes and  graphene as _llers in reinforced polymer nanocomposites",  J. Indust. Eng. Chem., 21, pp. 11{25 (2015).  9. Seidel, G.D. and Lagoudas, D.C. Micromechanical  analysis of the e_ective elastic properties of carbon  nanotube reinforced composites", Mech. Mater., 38,  pp. 884{907 (2006).  10. Giannopoulos, G.I., Georgantzinos, S.K., and Anifantis,  N.K. A semi-continuum _nite element approach to  evaluate the young's modulus of single-walled carbon  nanotube reinforced composites", Compos. Part B, 41,  pp. 594{601 (2010).  11. Loos, M.R. and Manas-Zloczower, I. Micromechanical  models for carbon nanotube and cellulose nanowhisker  reinforced composites", Polymer Eng. Sci., 53, pp.  882{887 (2013).  12. Ansari, R. and Hassanzadeh Aghdam, M.K.  Micromechanics-based viscoelastic analysis of carbon  nanotube-reinforced composites subjected to uniaxial  and biaxial loading", Compos. Part B, 90, pp.  512{522 (2016).  13. Ansari, R. and Hassanzadeh Aghdam, M.K. Micromechanical  characterizing elastic, thermoelastic  and viscoelastic properties of functionally graded carbon  nanotube reinforced polymer nanocomposites",  Meccanica, 52, pp. 1625{1640 (2017).  14. Alva, A., Bhagat, A., and Raja, S. E_ective moduli  evaluation of carbon nanotube reinforced polymers  using micromechanics", Mech. Adv. Mater. Struct., 22,  pp. 819{828 (2015).  15. Ansari, R., Hassanzadeh Aghdam, M.K., and Mahmoodi,  M.J. Three-dimensional micromechanical  analysis of the CNT waviness inuence on the mechanical  properties of polymer nanocomposites", Acta  Mech., 227, pp. 3475{3495 (2016).  16. Wattanasakulpong, N. and Ungbhakorn, V. Analytical  solutions for bending, buckling and vibration  responses of carbon nanotube-reinforced composite  260 M. Ahmadi et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 252{261  beams resting on elastic foundation", Comput. Mater.  Sci., 71, pp. 201{208 (2013).  17. Lin, F. and Xiang, Y. Vibration analysis of carbon  nanotube reinforced composite plates", Appl. Mech.  Mater., 553, pp. 681{686 (2014).  18. Abdollahzadeh Shahrbabaki, E. and Alibeigloo, A.  Three-dimensional free vibration of carbon nanotubereinforced  composite plates with various boundary  conditions using Ritz method", Compos. Struct., 111,  pp. 362{370 (2014).  19. Ansari, R., Faghih Shojaei, M., Mohammadi, V., and  Sadeghi, F. Nonlinear forced vibration analysis of  functionally graded carbon nanotube-reinforced composite  Timoshenko beams", Compos. Struct., 113, pp.  316{327 (2014).  20. Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami,  R., and Shahabodini, A. Forced vibration analysis of  functionally graded carbon nanotube-reinforced composite  plates using a numerical strategy", Physica E,  69, pp. 294{305 (2015).  21. Wu, H.L., Yang, J., and Kitipornchai, S. Imperfection  sensitivity of postbuckling behaviour of functionally  graded carbon nanotube-reinforced composite beams",  Thin-Walled Struct., 108, pp. 225{233 (2016).  22. Ansari, R., Shahabodini, A., and Faghih Shojaei, M.  Vibrational analysis of carbon nanotube-reinforced  composite quadrilateral plates subjected to thermal  environments using a weak formulation of elasticity",  Compos. Struct., 139, pp. 167{187 (2016).  23. Mirzaei, M. and Kiani, Y. Free vibration of functionally  graded carbon-nanotube-reinforced composite  plates with cutout", Beilstein J. Nanotechnol., 7, pp.  511{523 (2016).  24. Ansari, R., Pourashraf, T., Gholami, R., and Shahabodini,  A. Analytical solution for nonlinear postbuckling  of functionally graded carbon nanotube-reinforced  composite shells with piezoelectric layers", Compos.  Part B, 90, pp. 267{277 (2016).  25. Ghorbani Shenas, A., Malekzadeh, P., and Ziaee, S.  Vibration analysis of pre-twisted functionally graded  carbon nanotube reinforced composite beams in thermal  environment", Compos. Struct., 162, pp. 325{340  (2017).  26. Gholami, R., Ansari, R., and Gholami, Y. Nonlinear  resonant dynamics of geometrically imperfect  higher-order shear deformable functionally graded  carbon-nanotube reinforced composite beams", Compos.  Struct., 174, pp. 45{58 (2017).  27. Gholami, R. and Ansari, R. The e_ect of initial  geometric imperfection on the nonlinear resonance of  functionally graded carbon nanotube-reinforced composite  rectangular plates", Appl. Math. Mech., 39, pp.  1219{1238 (2018).  28. Gholami, R. and Ansari, R. Nonlinear harmonically  excited vibration of third-order shear deformable functionally  graded graphene platelet-reinforced composite  rectangular plates", Eng. Struct., 156, pp. 197{209  (2018).  29. Gholami, R. and Ansari, R. Large deection geometrically  nonlinear analysis of functionally graded multilayer  graphene platelet-reinforced polymer composite  rectangular plates", Compos. Struct., 180, pp. 760{  771 (2018).  30. Gholami, R., Ansari, R., and Gholami, Y. Numerical  study on the nonlinear resonant dynamics of  carbon nanotube/_ber/polymer multiscale laminated  composite rectangular plates with various boundary  conditions", Aerosp. Sci. Technol., 78, pp. 118{129  (2018).  31. Gholami, R. and Ansari, R. Nonlinear bending  of third-order shear deformable carbon nanotube/  _ber/polymer multiscale laminated composite  rectangular plates with di_erent edge supports", Eur.  Phys. J. Plus, 133, p. 282 (2018).  32. Gholami, R. and Ansari, R. Geometrically nonlinear  resonance of higher-order shear deformable functionally  graded carbon-nanotube-reinforced composite  annular sector plates excited by harmonic transverse  loading", Eur. Phys. J. Plus, 133, p. 56 (2018).  33. Odegard, G.M., Gates, T.S., Wise, K.E., Park, C.,  and Siochi, E.J. Constitutive modeling of nanotubereinforced  polymer composites", Compos. Sci. Technol.,  63, pp. 1671{1687 (2003).  34. Tsai, J.L., Tzeng, S.H., and Chiu, Y.T. Characterizing  elastic properties of carbon nanotubes/polyimide  nanocomposites using multi-scale simulation", Compos.  Part B, 41, pp. 106{115 (2010).  35. Shokrieh, M.M. and Ra_ee, R. Stochastic multiscale  modeling of CNT/polymer composites", Comput.  Mater. Sci., 50, pp. 437{446 (2010).  36. Joshi, U.A., Sharma, S.C., and Harsha, S.P. A  multiscale approach for estimating the chirality e_ects  in carbon nanotube reinforced composites", Physica E,  45, pp. 28{35 (2012).  37. Vu-Bac, N., Ra_ee, R., Zhuang, X., Lahmer, T., and  Rabczuk, T. Uncertainty quanti_cation for multiscale  modeling of polymer nanocomposites with correlated  parameters", Compos. Part B, 68, pp. 446{464 (2015).  38. Ahmadi, M., Ansari, R., and Rouhi, H. Multi-scale  bending, buckling and vibration analyses of carbon  _ber/carbon nanotube-reinforced polymer nanocomposite  plates with various shapes", Physica E, 93, pp.  17{25 (2017).  39. Ahmadi, M., Ansari, R., and Hassanzadeh-Aghdam,  M.K. Low velocity impact analysis of beams made  of short carbon _ber/carbon nanotube-polymer composite:  A hierarchical _nite element approach", Mech.  Adv. Mater. Struct., 26(13), pp. 1104{1114 (2019).  40. Ahmadi, M., Ansari, R., and Rouhi, H. Free  and forced vibration analysis of rectangular/ circular/  annular plates made of carbon _ber-carbon  nanotube-polymer hybrid composites", Sci. Eng. Compos.  Mater., 26(1), pp. 70{76 (2019).  M. Ahmadi et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 252{261 261  41. Ahmadi, M., Ansari, R., and Rouhi, H. On the  free vibrations of piezoelectric carbon nanotubereinforced  microbeams: a multiscale _nite element  approach", Iranian J. Sci. Technol. Trans.  Mech. Eng., 43(Supplement 1), pp. 285{294 (2019).  42. Ahmadi, M., Ansari, R., and Rouhi, S. Fracture behavior  of the carbon nanotube/carbon _ber/polymer  multiscale composites under bending test - A stochastic  _nite element method", Mech. Adv. Mater. Struct.,  26(13), pp. 1169{1177 (2019).  43. Ahmadi, M., Ansari, R., and Rouhi, H. Free vibration  analysis of carbon _ber-carbon nanotube-polymer matrix  composite plates by a _nite element-based multiscale  modeling approach", J. Multiscale Model., 9, p.  1850002 (2018).  44. Civalek,  O. and Demir, C_ . A simple mathematical  model of microtubules surrounded by an elastic matrix  by nonlocal _nite element method", Appl. Math.  Comput., 289, pp. 335{352 (2016).  45. Mercan, K. and Civalek,  O. DSC method for buckling  analysis of boron nitride nanotube (BNNT) surrounded  by an elastic matrix", Compos. Struct., 143,  pp. 300{309 (2016).  46. Refaeinejad, V., Rahmani, O., and Hosseini, S.A.H.  An analytical solution for bending, buckling, and free  vibration of FG nanobeam lying on Winkler-Pasternak  elastic foundation using di_erent nonlocal higher order  shear deformation beam theories", Scientia Iranica, F,  24, pp. 1635{1653 (2017).  47. Norouzzadeh, A., Ansari, R., and Rouhi, H. Isogeometric  vibration analysis of small-scale Timoshenko  beams based on the most comprehensive sizedependent  theory", Scientia Iranica, F, 25, pp. 1864{  1878 (2018).  48. Akgoz, B. and Civalek,  O. Buckling analysis of  cantilever carbon nanotubes using the strain gradient  elasticity and modi_ed couple stress theories", J.  Comput. Theor. Nanosci., 8, pp. 1821{1827 (2011).  49. Chen, W.J. and Li, X.P. Size-dependent free vibration  analysis of composite laminated Timoshenko beam  based on new modi_ed couple stress theory", Arch.  Appl. Mech., 83, pp. 431{444 (2013).  50. Akgoz, B. and Civalek,  O. Bending analysis of embedded  carbon nanotubes resting on an elastic foundation  using strain gradient theory", Acta Astronautica, 119,  pp. 1{12 (2016).  51. Karimzadeh, A. and Ahmadian, M.T. Vibrational  characteristics of size dependent vibrating  ring gyroscope", Scientia Iranica, B (2018). DOI:  10.24200/SCI.2018.20495  52. Jafari-Talookolaei, R.-A., Ebrahimzade, N., Rashidi-  Juybari, S., and Teimoori, K. Bending and vibration  analysis of delaminated Bernoulli-Euler microbeams  using the modi_ed couple stress", Scientia Iranica, B,  25, pp. 675{688 (2018).  53. Shen, L. and Li, J. Transversely isotropic elastic  properties of single-walled carbon nanotubes", Phys.  Rev. B, 69, p. 045414 (2004).  54. Shen, L. and Li, J. Transversely isotropic elastic  properties of multiwalled carbon nanotubes", Phys.  Rev. B, 71, p. 035412 (2005).  55. Selmi, A., Friebel, C., Doghri, I., and Hassis, H.  Prediction of the elastic properties of single walled  carbon nanotube reinforced polymers: A comparative  study of several micromechanical models", Compos.  Sci. Technol., 67, pp. 2071{2084 (2007).  56. Kulkarni, M., Carnahan, D., Kulkarni, K., Qian, D.,  and Abot, J.L. Elastic response of a carbon nanotube  _ber reinforced polymeric composite: A numerical and  experimental study", Compos. Part B, 41, pp. 414{421  (2010).  57. Odegard, G.M., Clancy, T.C., and Gates, T.S.  Modeling of the mechanical properties of nanoparticle/polymer composites", Polymer, 46, pp. 553{562  (2005).