Comparative study of damage behavior of synthetic and natural fiber-reinforced brittle composite and natural fiber-reinforced flexible composite subjected to low-velocity impact

Document Type : Article


Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru 575025, India.


In the present study, comparative study on the damage behaviour of Glass-Epoxy (GE), Jute-Epoxy (JE) laminates with [0/90]s orientation and Jute-Rubber-Jute (JRJ) sandwich is carried out using ABAQUS/CAE finite element software. The GE, JE laminate and JRJ sandwich with thickness of 2 mm is impacted by a hemispherical shaped impactor at a velocity of 2.5 m/s. The mechanisms in which the brittle laminate gets damaged are analyzed using Hashin’s 2D failure criteria and flexible composites are analysed by ductile damage mechanism. The energy absorbed and the incipient point of each laminate was compared. It was observed from the results that there is no evidence of delamination in JRJ as opposed to GE and JE. The compliant nature of rubber contributes in absorbing more energy and it is slightly higher than GE. Also it was observed that there is no incipient point in JRJ sandwich which means there is no cracking of matrix since rubber is elastic material. Thus the JRJ material can be a better substitute for GE laminate in low velocity applications. The procedure proposed for the analysis in the present study can serve as benchmark method in modelling the impact behaviour of composite structures in further investigations.


Main Subjects

1. Friedrich, K. and Almajid, A.A. Manufacturing aspects  of advanced polymer composites for automotive  applications", Applied Composite Materials, 20(2), pp.  107-128 (2013).  2. Dogan, A. and Arikan, V. Low-velocity impact response  of E-glass reinforced thermoset and thermoplastic  based sandwich composites", Composites Part B:  Engineering, 127, pp. 63-69 (2017).  3. Richardson, M.O.W. and Wisheart, M.J. Review of  low-velocity impact properties of composite materials",  Composites Part A: Applied Science and Manufacturing,  27(12), pp. 1123-1131 (1996).  4. Jang, B.W. and Kim, C.G. Real-time detection  of low-velocity impact-induced delamination onset in  composite laminates for e_cient management of structural  health", Composites Part B: Engineering, 123,  pp. 124-135 (2017).  5. Yang, B.,Wang, Z., Zhou, L., Zhang, J., and Liang, W.  Experimental and numerical investigation of interply  hybrid composites based on woven fabrics and PCBT  resin subjected to low-velocity impact", Composite  Structures, 132, pp. 464-476 (2015).  348 M. Vishwas et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 341{349  6. Yang, B., Wang, Z., Zhou, L., Zhang, J., Tong, L.,  and Liang, W. Study on the low-velocity impact  response and CAI behavior of foam-_lled sandwich  panels with hybrid facesheet", Composite Structures,  132, pp. 1129-1140 (2015).  7. Wu, J., Liu, X., Zhou, H., Li, L., and Liu, Z.  Experimental and numerical study on soft-hard-soft  (SHS) cement based composite system under multiple  impact loads", Materials and Design, 139, pp. 234-257  (2018).  8. Yang, B., He, L., and Gao, Y. Simulation on impact  response of FMLs: e_ect of _ber stacking sequence,  thickness, and incident angle", Science and Engineering  of Composite Materials, 25(3), pp. 621-631 (2017).  9. Zhang, C., Duodu, E.A., and Gu, J. Finite element  modeling of damage development in cross-ply composite  laminates subjected to low velocity impact",  Composite Structures, 173, pp. 219-227 (2017).  10. Abir, M.R., Tay, T.E., Ridha, M., and Lee, H.P. On  the relationship between failure mechanism and Compression  After Impact (CAI) strength in composites",  Composite Structures, 182, pp. 242-250 (2017).  11. Kling, S. and Czigany, T. Damage detection and selfrepair  in hollow glass _ber fabric reinforced epoxy  composites via _ber _lling", Composites Science and  Technology, 99, pp. 82-88 (2014).  12. Wang, Z., Xu, L., Sun, X., Shi, M., and Liu, J.  Fatigue behavior of glass-_ber-reinforced epoxy composites  embedded with shape memory alloy wires",  Composite Structures, 178, pp. 311-319 (2017).  13. Almansour, F.A., Dhakal, H.N., and Zhang, Z.Y.  E_ect of water absorption on Mode I interlaminar  fracture toughness of ax/basalt reinforced vinyl ester  hybrid composites", Composite Structures, 168, pp.  813-825 (2017).  14. Wang, S., Huang, L., An, Q., Geng, L., and Liu, B.  Dramatically enhanced impact toughness of two-scale  laminate-network structured composites", Materials  and Design, 140, pp. 163-171 (2018).  15. Zhandarov, S. and Mader, E. Determining the interfacial  toughness from force-displacement curves in  the pull-out and microbond tests using the alternative  method", International Journal of Adhesion and Adhesives,  65, pp. 11-18 (2016).  16. Zheng, N., Huang, Y., Liu, H.Y., Gao, J., and Mai,  Y.W. Improvement of interlaminar fracture toughness  in carbon _ber/epoxy composites with carbon nanotubes/  polysulfone interleaves", Composites Science  and Technology, 140, pp. 8-15 (2017).  17. Sonnenfeld, C., Jakani, H.M., Agogue, R., Nunez, P.,  and Beauchene, P. Thermoplastic/thermoset multilayer  composites: A way to improve the impact damage  tolerance of thermosetting resin matrix composites",  Composite Structures, 171, pp. 298-305 (2017).  18. Wambua, P., Ivens, I., and Verpoest, I. Natural _bers:  can they replace glass in _bre reinforced plastics?",  Composites Science and Technology, 63(9), pp. 1259-  1264 (2003).  19. Monteiro, S.N., Lopes, F.P.D., Ferreira, A.S., and  Nascimento, D.C.O. Natural _ber polymer matrix  composites: cheaper, tougher and environmentally  friendly", JOM, 61(1), pp. 17-22 (2009).  20. Holbery, J. and Houston, D. Natural-_ber-reinforced  polymer composites applications in automotive",  JOM, 58(11), pp. 80-86 (2006).  21. Thomas, N., Paul, S.A., Pothan, L.A., and Deepa,  B., Natural Fibers: Structure, Properties and Applications,  Springer-Verlag Publications, Berlin, pp. 3-42  (2011).  22. Satyanarayana, K.G., Guimaraes, J.L., and Wypych,  F. Studies on lingo cellulosic _bers of Brazil. Part  I: Source, production, morphology, properties and  applications", Composites Part A Applied Science and  Manufacturing, 38(7), pp. 1694-1709 (2007).  23. Ariatapeh, M.Y., Mashayekhi, M., and Rad, S.Z.  Prediction of all-steel CNG cylinder fracture under  impact using a damage mechanics approach", Scientia  Iranica, Transactions B, 21(3), pp. 609-619 (2014).  24. Vishwas, M., Joladarashi, Sh., and Kulkarni, S.M.  Investigation on e_ect of using rubber as core material  in sandwich composite plate subjected to low  velocity normal and oblique impact loading", Scientia  Iranica, Transactions B, 26(2), pp. 897-907 (2019).  DOI: 10.24200/sci.2018.5538.1331  25. Karas, K. Plates under lateral impact", Archive of  Applied Mechanics, 10, pp. 237-250 (1939).  26. Hyunbum, P. Investigation on low velocity impact  behavior between graphite/epoxy composite and steel  plate", Composite Structures, 171, pp. 126-130 (2017).  27. Khan, S.H., Sharma, A.P., and Parameswaran, V.  An Impact induced damage in composite laminates  with intra-layer and inter-laminate damage", Procedia  Engineering, 173, pp. 409-416 (2017).  28. Zhang, C., Duodu, E.A., and Gu, J. Finite element  modeling of damage development in cross-ply composite  laminates subjected to low velocity impact",  Composite Structures, 173, pp. 219-227 (2017).  29. Rajole, S., Kumar, N., Ravishankar, K.S., and Kulkarni,  S.M. Mechanical characterization and _nite element  analysis of jute-epoxy composite", MATEC Web  of Conferences, 144 (2018).  30. Lee, S.M., Handbook of Composite Reinforcement,  Wiley publications, Palo Alto, California, USA (1992).  31. Mir, A., Aribi, C., and Bezzazi, B. Study of the  green composite jute/epoxy", International Journal of  Chemical, Molecular, Nuclear, Materials and Metallurgical  Engineering, 8(2), pp. 182-186 (2014).  32. Hossain, M.R., Islam, M.A., Vuurea, A.V., and Verpoest,  I. E_ect of _ber orientation on the tensile  properties of jute epoxy laminated composite", Journal  of Scienti_c Research, 5(1), pp. 43-54 (2013).  M. Vishwas et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 341{349 349  33. Lopes, C.S., Camanho, P.P., Grdal, Z., Maim, P.,  and Gonzlez, E.V. Low-velocity impact damage on  dispersed stacking sequence laminates. Part II: Numerical  simulations", Composites Science and Technology,  69(7-8), pp. 937-947 (2009).  34. Schn, J. Coe_cient of friction of composite delamination  surfaces", Wear, 237(1), pp. 77-89 (2000).