Modeling, control, and simulation of a SCARA PRR-type robot manipulator

Document Type : Article


Faculty of Technology, Department of Mechatronics Engineering, Sakarya University, Sakarya, Turkey.


In this study, a SCARA PRR-type robot manipulator is designed and implemented. Firstly, the SCARA robot was designed according to the mechanical calculations. Then, forward and inverse kinematic equations of the robot are derived by using D-H parameters and analytical methods. The software is developed according to obtain cartesian velocities from joint velocities and joint velocities from cartesian velocities. The trajectory planning is designed using the calculated kinematic equations and the simulation is performed in MATLAB VRML environment. A stepping motor is used for prismatic joint of the robot, and servo motors are used for revolute joints. While most of the SCARA robot studies focus on RRP-type servo control strategy, this work focuses PRR-type and both stepper and servo control structures. The objects in the desired points of the workspace are picked and placed to another desired point synchronously with the simulation. So the performance of the robot is examined experimentally.


Main Subjects

1. Soyaslan, M., Fenercioglu, A., and Kozkurt, C. A new  truck based order picking model for automated storage  and retrieval system (AS/RS)", Journal of Engineering  Research, 5(4), pp. 169{194 (2017).  2. Soyaslan, M., Kozkurt, C., and Fenercioglu, A. Automated  Storage and Retrieval Systems (ASRS): Research  on warehouse con_guration and performance  studies", Academic Platform Journal of Engineering  and Science - APJES, 3(3), pp. 8{26 (2015).  3. Robot Hall of Fame, Inductees-SCARA", Carnegie  Mellon University (2006). http://www. robothalloffame.  org/inductees/06inductees /scara.html  4. Visioli, A. and Legnani, G. On the trajectory tracking  control of industrial SCARA robot manipulators",  IEEE Transactions on Industrial Electronics, 49(1),  pp. 224{232 (2002).  5. Das, M.T. and Dulger, L.C. Mathematical modelling,  simulation and experimental veri_cation of a SCARA  robot", Simulation Modelling Practice and Theory,  13(3), pp. 257{271 (2005).  6. Alshamasin, M.S., Ionescu, F., and Al-Kasasbeh,  R.T. Kinematic modelling and simulation of a scara  robot by using solid dynamics and veri_cation by  Matlab/Simulink", European Journal of Scienti_c Research,  37(3), pp. 388{405 (2009).  7. Urrea, C. and Kern, J. Modelling, simulation and control  of a redundant SCARA-type manipulator robot",  International Journal of Advanced Robotic Systems,  9(2), p. 58 (2012).  8. Kaleli, A., Dumlu, A., C_ oraps_z, M.F., and Erenturk,  K. Detailed analysis of SCARA-type serial manipulator  on a moving base with LabVIEW", International  Journal of Advanced Robotic Systems, 10(4), p. 189  (2013).  9. Korayem, M.H., Yousefzadeh, M., and Manteghi, S.  Tracking control and vibration reduction of exible  cable-suspended parallel robots using a robust input  shaper", Scientia Iranica B, 25(1), pp. 230{252 (2018).  10. Kozkurt, C. and Soyaslan, M. Software development  for kinematic analysis of scara robot arm with Euler  wrist", 6th International Advanced Technologies Symposium  (IATS'11), Elaz_g, Turkey, pp. 27{32 (2011).  11. Kucuk, S. and Bingul, Z. An o_-line robot simulation  toolbox", Computer Applications in Engineering  Education, 18(1), pp. 41{52 (2009).  12. Adar, N.G. and Kozan, R. Comparison between real  time PID and 2-DOF PID controller for 6-DOF robot  arm", Acta Phys. Pol. A, 130(1), pp. 269{271 (2016).  13. Adar, N.G., Tiryaki, A.E., and Kozan, R. Real time  visual servoing of a 6-DOF robotic arm using Fuzzy-  PID controller", Acta Phys. Pol. A, 128(2B), pp. 348{  351 (2015).  14. Sayg_n, A. and Rashid, A.M. Position control of a  turret using LabVIEW", Acta Phys. Pol. A, 132(3-II),  pp. 970{973 (2017).  15. Karayel, D. and Yegin, V. Design and prototype  manufacturing of a torque measurement system", Acta  Phys. Pol. A, 130(1), pp. 272{275 (2016).  16. Fenercioglu, A., Soyaslan, M., and Kozkurt, C. Automatic  storage and retrieval system (AS/RS) based  340 M.E. Uk et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 330{340  on Cartesian robot for liquid food industry", 12th  International Workshop on Research and Education in  Mechatronics, Kocaeli, Turkey, pp. 283{287 (2011).  17. Korayem, M.H., Maddah, S.M., Taherifar, M., et  al. Design and programming a 3D simulator and  controlling graphical user interface of ICaSbot, a cable  suspended robot", Scientia Iranica B, 21(3), pp. 663{  681 (2014).  18. Sayyaadi, H. and Eftekharian, A.A. Modeling and  intelligent control of a robotic gas metal arc welding  system", Scientia Iranica, 15(1), pp. 75{93 (2008).  19. Gulzar, M.M., Murtaza, A.F., Ling, Q., et al. Kinematic  modeling and simulation of an economical scara  manipulator by Pro-E and veri_cation using MATLAB/  Simulink", IEEE International Conference on  Open Source Systems & Technologies (ICOSST), pp.  102{107 (2015).  20. Ibrahim, B.S.K.K. and Zargoun, A.M.A. Modelling  and control of SCARA manipulator", Procedia Computer  Science, 42, pp. 106{113 (2014).  21. Urrea, C., Cort_es, J., and Pascal, J. Design, construction  and control of a SCARA manipulator with 6  degrees of freedom", Journal of Applied Research and  Technology, 14(6), pp. 396{404 (2016).  22. Denavit, J. and Hartenberg, R.S. A kinematic notation  for lower-pair mechanisms based on matrices",  ASME J. Appl. Mechan., 77(2), pp. 215{221 (1955).  23. Bingul, Z. and Kucuk, S. _Ileri kinematik, ters  kinematik", In Robot Teknigi I, pp. 104{200, Birsen  Yay_nevi, Turkey (2005).  24. TB6600 Stepper Motor Driver (2017). https://www.  25. Dynamixel-All in one actuator, Robotis Inc (2014).  http://www.  26. Virtual Reality Modeling Language (VRML) - MATLAB  & Simulink (2017). https://www.mathworks.  com/help/sl3d/vrml.html