Parameter converting method for bifurcation analysis of nonlinear dynamical systems

Document Type : Article


Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, P.O. Box 484, Postal Code 47148-71167, Mazandaran, Iran.


For detecting behavior of a dynamical system, bifurcation analysis is necessary with respect to change in parameters of system. In this work, based on the solution of ordinary differential equations from initial value and parameters, a simple method is presented, which can efficiently reveal different bifurcations of system. In addition to its simplicity, this method does not required to have deep physical and mathematical understanding of the problem, and because of its high precision and the speed of solutions, does not need to reduce the order of models in many complex problems or problems with high degrees of freedom. This method is named parameter converting method (PCM), which has two steps. In the first step the parameter is varied as a function of time and in the second step, time is expressed as inverse of this assumed function. With this method bifurcation and amplitude-frequency diagrams and hidden attractors of some complex dynamics will be analyzed and the sensitivity of the multi potential well systems to initial conditions is studied. With this algorithm, a simple way to find the domain of high-energy orbit in bistable systems is obtained.


Main Subjects

1. Nayfeh, A.H., Introduction to Perturbation Techniques,  Wiley Classics Library Edition Published (1993).  2. Pakdemirli, M., Karahan, M.M.F., and Boyac, H.  A new perturbation algorithm with better convergence  properties: Multiple scales lindstedt poincare  method", Math. Comp. App. 14, pp. 31{44 (2009).  3. Pakdemirli, M. Review of the new perturbationiteration  method", Math. Comp. App., 18, pp. 139{  151 (2013).  4. Damil, N. and Potier-Ferry, M. A new method to  compute perturbed bifurcations: application to the  buckling of imperfect elastic structures", Int. J. Eng.  Sci., 28, pp. 943{957 (1990).  5. Vannucci, P., Cochelin, B., Damil, N., and Potier-  Ferry, M. An asymptotic-numerical method to compute  bifurcating branches", Int. J. Num. Meth. Eng,.  41, pp. 1365{1389 (1998).  6. Boutyour, E.H., Zahrouni, H., Potier-Ferry, M., and  Boudi, M. Bifurcation points and bifurcated branches  by an asymptotic numerical method and Pad_e approximants",  Int. J. Num. Meth. Eng, 60, pp. 1987{2012  (2004).  7. Cochelin, B., Damil, N., and Potier-Ferry, M. Asymptotic  numerical method and pad_e approximants for  nonlinear elastic structures", Int. J. Num. Meth. Eng.,  37, pp. 1187{1213 (1994).  8. Hamdaoui, A., Hihi, R., Braikat, B., Tounsi, N., and  Damil, N. A new class of vector pad_e approximants  in the asymptotic numerical method: Application in  nonlinear 2D elasticity", World J. Mech., 4, pp. 44{53  (2014).  9. Elhage-Hussein, A., Potier-Ferry, M., and Damil, N.  A numerical continuation method based on Pade  approximants", Int. J. Sol. Struc., 37, pp. 6981{7001  (2000).  10. Cochelin, B. A path-following technique via an  asymptotic-numerical method", Comp. Struc., 53, pp.  1181{192 (1994).  11. Kerschen, G., Peeters, M., Golinval, J.C., and Vakakis,  A.F. Nonlinear normal modes, Part I: A useful  framework for the structural dynamics", Mech. Sys.  Sig. Proc. 23, pp. 170{194 (2009).  12. Peeters, M., Vigui_e, R., S_e randour, G., Kerschen,  G., and Golinval, J.C. Nonlinear normal modes, Part  II: Toward a practical computation using numerical  continuation techniques", Mech. Sys. Sig. Proc., 23,  pp. 195{216 (2009).  13. Barton, D.A.W., Krauskopf, B., and Wilson, R.E.  Homoclinic bifurcations in a neutral delay model of  a transmission line oscillator", Nonlinearity, 20, pp.  809{829 (2007).  14. Beyn, W.J. The numerical computation of connecting  orbits in dynamical systems", IMA J. Num. Ana., 10,  pp. 379{405 (1990).  15. Beyn, W.J. Numerical methods for dynamical systems",  W. Light, Ed., Advances in Numerical Analysis,  Lancaster, Clarendon, Oxford, I, pp. 175{236 (1990).  16. Keller, H.B., Lectures on Numerical Methods in Bifurcation  Problems, Tata Institute of Fundamental  Research (1986).  17. Allgower, E.L. and Georg, K., Introduction to Numerical  Continuation Methods, Springer Series in Computational  Mathematics (1990).  18. Meijer, H., Dercole, F., and Oldman, B. Numerical  bifurcation analysis", Eds., R., Meyers, Mathematics  of Complexity and Dynamical Systems, Springer, New  York, NY (2012).  19. Doedel, E.J., Nonlinear Numerics, J., Franklin Inst.,  334(5{6), pp. 1049{1073 (1997).  20. Karkar, S., Cochelin, B., and Vergez, Ch. A highorder,  purely frequency based harmonic balance formulation  for continuation of periodic solutions: The  case of non-polynomial nonlinearities", J. Sound Vib.,  332, pp. 968{977 (2013).  21. Karkar, S., Cochelin, B., and Vergez, Ch. A comparative  study of the harmonic balance method and  the orthogonal collocation method on sti_ nonlinear  systems", J. Sound Vib., 333, pp. 2554{2567 (2014).  22. Rega, G. and Troger, H. Dimension reduction of  dynamical systems: methods, models, applications",  Nonlinear Dyn, 41, pp. 1{15 (2005).  23. Steindl, A. and Troger, H. Methods for dimension  reduction and their application in nonlinear dyn", Int.  J. Sol. Struc., 38, pp. 2131{2147 (2001).  24. Terragni, F. and Vega, J.M. On the use of POD-based  ROMs to analyze bifurcations in some dissipative  systems", Phys. D., 241, pp. 1393{1405 (2012).  328 H. Asghari and M. Dardel/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 310{329  25. Couplet, M., Basdevant, C., and Sagaut, P. Calibrated  reduced-order POD- Galerkin system for uid  ow modeling", J. Comp. Phys., 207, pp. 192{220  (2005).  26. Sirisup, S., Karniadakis, G.E., and Kevrekidis, I.G.  Equations-free/Galerkin-free POD assisted computation  of incompressible ows", J. Comp. Phys., 207, pp.  568{587 (2005).  27. Rapun, M.L. and Vega, J.M. Reduced order models  based on local POD plus Galerkin projection", J.  Comp. Phys., 229, pp. 3046{3063 (2010).  28. Terragni, F., Valero, E., and Vega, J.M. Local POD  plus Galerkin projection in the unsteady lid-driven  cavity problem", J. Sci. Comp. arch., 33, pp. 3538{  3561 (2011).  29. Doedel Laurette, E., Tuckerman, S., Numerical Methods  for Bifurcation Problems and Large-Scale Dynamical  Systems, Springer, The IMA Volumes in Mathematics  and Its Applications, 119 (1999).  30. Govaerts, W. Numerical bifurcation analysis for  ODEs", J. Comp. App. Math., 125, pp. 57{68 (2000).  31. Heyman, J., Girault, G., Guevel, Y., Allery, C.,  Hamdouni, A., and Cadou, J.M. Computation of  Hopf bifurcations coupling reduced order models and  the asymptotic numerical method", Comp. Fluids, 76,  pp. 73{85 (2013).  32. Meyers, R.A., Mathematics of Complexity and Dynamical  Systems, Springer Science + Business Media, LLC  (2012).  33. Dijkstra, H.A., Wubs, F.W., Cli_e, A.K., et al. Numerical  bifurcation methods and their application to  uid dynamics: Analysis beyond simulation", Comm.  Comp. Phy., 15, pp. 1{45 (2014).  34. Gai, G. and Timme, S. Nonlinear reduced-order modelling  for limit-cycle oscillation analysis", Nonlinear  Dyn, 84, pp. 991{1009 (2016).  35. Feng, Y. and Pan, W. Hidden attractors without equilibrium  and adaptive reduced-order function projective  synchronization from hyper chaotic Rikitake system",  Pramana J. Phy., 88, p. 62 (2017).  36. Chnafa, C., Valen-Sendstad, K., Brina, O., Pereira,  V.M., and Steinman, D.A. Improved reduced-order  modelling of cerebrovascular ow distribution by accounting  for arterial bifurcation pressure drops", J.  Biom, 51, pp. 83{88 (2017).  37. Amabili, M., Karazis, K., and Khorshidi, K. Nonlinear  vibrations of rectangular laminated composite  plates with di_erent boundary conditions", Int. J.  Struc. Stab. Dyn., 11, pp. 673{695 (2011).  38. Kurt, E., Ciylan, B., Taskan, O.O., and Kurt. H.H.  Bifurcation analysis of a resistor-double inductor and  double diode circuit and a comparison with a resistorinductor-  diode circuit in phase space and parametrical  responses", Scientia Iranica, Trans. D: Computer Sci.  Eng. Ele. 21, pp. 935{944 (2014).  39. Sayyaadi, H., Tadayon, M.A., and Eftekharian, A.A.  Micro resonator nonlinear dynamics considering intrinsic  properties", Scientia Iranica, Trans. B: Mech.  Eng., 16, pp. 121{129 (2009).  40.  41.  42. Front-  Page.html  43.  44. Lorenz, E.N. Deterministic nonperiodic ow", J.  Atm. Sci., 20, pp. 130{141 (1963).  45. Rossler, O.E. An equation for continuous Chaos",  Physics Letters, 57A, pp. 397{398 (1976).  46. Chua, L.O. and Lin, G.N. Canonical realization of  Chua's circuit family", IEEE Tran. Circuits Sys., 37,  pp. 885{902 (1990).  47. Chen, G. and Ueta, T. Yet another chaotic attractor",  Int. J. Bifu. Chaos, 9, pp. 1465{1466 (1999).  48. Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov,  N.V., Leonov, G.A., and Prasad, A. Hidden attractors  in dynamical systems", Phy. Rep., 637, pp. 1{50  (2016).  49. Kuznetsov, N.V., Leonov, G.A., and Vagaitsev, V.I.  Analytical-numerical method for attractor localization  of generalized Chua's system", IFAC Proc., 43,  pp. 29{33 (2010).  50. Leonov, G.A., Vagaitsev, V.I., and Kuznetsov, N.V.  Algorithm for localizing Chua attractors based on the  harmonic linearization method", Doklady Math., 433,  pp. 323{326 (2010).  51. Leonov, G.A., Kuznetsov, N.V., and Vagaitsev, V.I.  Localization of hidden Chua's attractors", Phy. Let.  A, 375, pp. 2230{2233 (2011).  52. Leonov, G.A. and Kuznetsov, N.V. Algorithms for  searching for hidden oscillations in the Aizerman and  Kalman problems", Doklady Math., 84(1), 475{481  (2011).  53. Leonov, G.A. and Kuznetsov, N.V. Analyticalnumerical  methods for investigation of hidden oscillations  in nonlinear control systems", IFAC Proc, 44(1),  pp. 2494{2505 (2011).  54. Bragin, V.O., Vagaitsev, V.I., Kuznetsov, N.V., and  Leonov, G.A. Algorithms for _nding hidden oscillations  in nonlinear systems. The Aizerman and Kalman  Conjectures and Chua's circuits", J. Computer Sys.  Sci. Int., 50(4), pp. 511{543 (2011).  55. Kuznetsov, N., Kuznetsova, O., Leonov, G., and  Vagaitsev, V. Analytical-numerical localization of  hidden attractor in electrical Chua's circuit", Informatics  in Control, Automation and Robotics. Lecture  Notes in Electrical Engineering, 174, Springer, Berlin,  Heidelberg, pp. 149{157 (2013).  56. Zelinka, I. Evolutionary identi_cation of hidden  chaotic attractors", Eng. App. Art. Intel., 50, pp. 159{  167 (2016).  H. Asghari and M. Dardel/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 310{329 329  57. Ivancevic, V.G., Ivancevic, T.T., High-Dimensional  Chaotic and Attractor Systems: A Comprehensive Introduction,  Intelligent Systems, Control and Automation:  Science and Engineering, 1st edition, Springer  (2007).  58. Li, Q., Zeng, H., and Yang, X.S. On hidden twin  attractors and bifurcation in the Chua's circuit", Nonlinear  Dyn, 77(1{2), pp. 255{266 (2014).  59. Gri_ths, D.F. and Higham, D.J. Numerical Methods  for Ordinary Di_erential Equations: Initial Value  Problems, Springer-Verlag London (2010).  60. Dormand, J.R. and Prince, P.J. A family of embedded  Runge-Kutta formula", J. Comp. App. Math., 6, pp.  19{26 (1980).  61.  attractor.  62. Kovacic, I. and Brennan, M.J., The Du_ng Equation:  Nonlinear Oscillators and Their Behaviour, Wiley  (2011).  63. oscillator.  64. Harne, R.L. and Wang, K.W. A review of the recent  research on vibration energy harvesting via bistable  systems", Smart Mat. Struc., 22(2), 023001 (2013).  65. Panyam, M. and Ram, M., Characterizing the effective  bandwidth of nonlinear vibratory energy harvesters  possessing multiple stable equilibria", PhD  Dissertation, Clemson University, December (2015).  66. Ramlan, R., Brennan, M.J., Mace, B.R., and Kovacic,  I. Potential bene_ts of a non-linear sti_ness in an  energy harvesting device", Nonlinear Dyn, 59(4), pp.  545{558 (2010).  67. Erturk, A. and Inman, D.J. Broadband piezoelectric  power generation on high-energy orbits of the bistable  Du_ng oscillator with electromechanical coupling", J.  Sound Vib., 330, pp. 2339{2353 (2011).  68. Karami, M.A. and Inman, D.J. Equivalent damping  and frequency change for linear and nonlinear hybrid  vibrational energy harvesting systems", J. Sound Vib.,  330, pp. 5583{5597 (2011).  69. Panyamn, M., Masana, R., and Daqaq, M.F. On  approximating the e_ective bandwidth of bi-stable  energy harvesters", Int. J. Nonl. Mech., 67, pp. 153{  163 (2014).  70. Panyam, M. and Daqaq, M.F. A comparative performance  analysis of electrically optimized nonlinear  energy harvesters", J. Intel. Mate. Struc., 27(4), pp.  537{548 (2016).  71. Guang-Qing, W. and Wei-Hsin, L. A strategy for  magnifying vibration in high-energy orbits of a bistable  oscillator at low excitation levels", Chinese Phy. Let.,  32(6), 068503 (2015).  72. Zhou, Sh., Cao, J., Inman, D.J., Liu, Sh., Wang,  W., and Lin, J. Impact-induced high-energy orbits  of nonlinear energy harvesters", Ap. Phy. Let., 106,  093901 (2015).  73. Wang, G.Q. and Liao, W.H. A bistable piezoelectric  oscillator with an elastic magni_er for energy harvesting  enhancement", J. Intel. Mate. Struc., 28(3), pp.  392{407 (2017).  74. Zhou, Sh., Cao, J., Inman, D.J., Lin, J., and Li,  D. Harmonic balance analysis of nonlinear tristable  energy harvesters for performance enhancement", J.  Sound Vib., 373(7), pp. 223{235 (2016).