Quasi-oppositional symbiotic organisms search algorithm for different economic load dispatch problems

Document Type : Article

Authors

Department of Electrical Engineering, National Institute of Technology, Agartala, Pin-799046, India

Abstract

In this paper, an effective meta-heuristic technique called Quasi-Oppositional Symbiotic Organisms Search is applied for solving non-convex economic dispatch problems. Symbiotic Organisms Search is a soft computing technique, inspired by organisms in the ecosystem. This technique is implemented for improving the solution quality in minimum time. In order to improve convergence rate, quasi-reflected numbers are used here instead of pseudo-random numbers. Different equality and inequality constraints such as transmission loss, load demand, prohibited operating zone, generator operating limits and boundary of ramp rate are considered here. Presence of multiple fuels and valve point are also considered in some cases. This algorithm is applied to four different test systems. Simulation results are compared with many recently developed optimization techniques to show the superiority and consistency of this method. Simulation results also show that the computational efficiency of this algorithm is much better than the other meta-heuristic methods available in the literature.

Keywords


References
1. Fanshel, S. and Lynes, E.S. Economic power generation
using linear programming", IEEE Trans.
Power Appar. Syst., 83(4), pp. 347{356 (1964). DOI:
10.1109/TPAS/.1964.4766011
2. Bellman, R., The Theory of Dynamic Programming,
Rand Corp Santa Monica CA (1954).
D. Das et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3096{3117 3115
3. Wood, J. and Wollenberg, B.F., Power Generation,
Operation, and Control, John Wiley and Sons, 2nd
Edn., Wiley New York (1984).
4. Ingber, L. Simulated annealing : Practice versus
Theory", Mathl. Comput. Modeling l, 18(11), pp. 29{
57 (1993). DOI: 10.1016/0895-7177(93)90204-C
5. Panigrahi, C.K., Chattopadhyay, P.K., and
Chakrabarti, R.N., et al. Simulated annealing
technique for dynamic economic dispatch", Electr.
Power Compon. Syst., 34(5), pp. 577{586 (2006).
DOI: 10.1080/15325000500360843
6. Walters, D.C. and Sheble, G.B. Genetic algorithm solution
of economic dispatch with valve point loadings",
IEEE Trans. Power Syst., 8(3), pp. 1325{1331 (1993).
DOI: 10.1109/59.260861
7. Chiang, C.L. Improved genetic algorithm for power
economic dispatch of units with valve-point e ects and
multiple fuels", IEEE Trans. Power Syst., 20(4), pp.
1690{1699 (2005). DOI: 10.1109/TPWRS.2005.857924
8. Kennedy, J. and Eberhart, R. Particle swarm
optimization", In Pro. IEEE Int. Conf. Neural
Networks, IV, pp. 1942{1948 (1995). DOI:
10.1109/ICNN.1995.488968
9. Gaing, Z.-L. Particle swarm optimization to solving
the economic dispatch considering the generator constraints",
IEEE Trans. Power Syst., 18(3), pp. 1187{
1195 (2003). DOI: 10.1109/TPWRS.2003.814889
10. Selvakumar, I. and Thanushkodi, K. A new particle
swarm optimization solution to nonconvex economic
dispatch problems", IEEE Trans. Power Syst., 22(1),
pp. 42{51 (2007). DOI: 10.1109/TPWRS.2006.889132
11. Panigrahi, B.K., Pandi, V.R., and Das, S. Adaptive
particle swarm optimization approach for static
and dynamic economic load dispatch", Energy Convers.
Manage., 49(6), pp. 1407{1415 (2008). DOI:
10.1016/j.enconman.2007.12.023
12. Vlachogiannis, J.K. and Lee, K.Y. Economic load dispatch
- a comparative study on heuristic optimization
techniques with an improved coordinated aggregationbased
PSO", IEEE Trans. Power Syst., 24(2), pp. 991{
1001 (2009). DOI: 10.1109/TPWRS.2009.2016524
13. Park, J.B., Jeong, Y.W., Shin, J.R., et al. An
improved particle swarm optimization for non-convex
economic dispatch problems", IEEE Trans. Power
Syst., 25 (1), pp. 156{166 (2010). DOI: 10.1109/TPWRS.
2009.2030293
14. Hosseinnezhad, V., Ra ee, M., Ahmadian, M., et
al. Species-based quantum particle swarm optimization
for economic load dispatch", Int. J. Electr.
Power & Energy Syst., 63, pp. 311{322 (2014). DOI:
10.1016/j.ijepes.2014.05.066
15. Storn, R. and Price, K.V. Di erential evolution a
simple and ecient heuristic for global optimization
over continuous spaces", J. Global Optim., 11(4), pp.
341{359 (1997). DOI: 10.1023/A:100820282
16. Noman, N. and Iba, H. Di erential evolution for
economic load dispatch problems", Electr. Power
Syst. Res., 78(3), pp. 1322{1331 (2008). DOI:
10.1016/j.epsr.2007.11.007
17. Coelho, L.D.S. and Mariani, V.C. Combining of
chaotic di erential evolution and quadratic programming
for economic dispatch optimization with valvepoint
e ect", IEEE Trans. Power Syst., 21 (2), pp.
989{996 (2006). DOI: 10.1109/TPWRS.2006.873410
18. Parouha, R.P. and Das, K.N. A novel hybrid optimizer
for solving economic load dispatch problem",
Int. J. Electr. Power & Energy Syst., 78, pp. 108{126
(2016). DOI: 10.1016/j.ijepes.2015.11.058
19. Zou, D., Li, S., Wang, G-G., et al. An improved
di erential evolution algorithm for the economic
load dispatch problems withor without valvepoint
e ects", Appl. Energy, 181, pp. 375{390 (2016).
DOI: 10.1016/j.apenergy.2016.08.067
20. Jayabharathi, T., Jayaprakash, K., Jeyakumar, N.,
et al. Evolutionary programming techniques for different
kinds of economic dispatch problems", Electr.
Power Syst. Res., 73(2), pp. 169{176 (2005). DOI:
10.1016/j.epsr.2004.08.001
21. Sinha, N., Chakrabarti, R., and Chattopadhyay, P.K.
Evolutionary programming techniques for economic
load dispatch", IEEE Trans. Evol. Comput., 7(1), pp.
83{94 (2003). DOI: 10.1109/TEVC.2002.806788
22. Panigrahi, B.K. and Pandi, V.R. Bacterial foraging
optimization Nelder-Mead hybrid algorithm for
economic load dispatch", IET Generation, Transm.
Distrib., 2(4), pp. 556{65 (2008). DOI: 10.1049/ietgtd:
20070422
23. Simon, D. Biogeography-based optimization", IEEE
Trans. Evol. Comput., 12(6), pp. 702{713 (2008).
DOI: 10.1109/TEVC.2008.919004
24. Bhattacharya, A. and Chattopadhyay, P.K.
Biogeography-based optimization for di erent
economic load dispatch problems", IEEE Trans.
Power Syst., 25(2), pp. 1064{1077 (2010). DOI:
10.1109/TPWRS.2009.2034525
25. Bhattacharya, A. and Chattopadhyay, P.K. Hybrid
di erential evolution with biogeography-based optimization
for solution of economic load dispatch", IEEE
Trans. Power Syst., 25(4), pp. 1955{1964 (2010). DOI:
10.1109/TPWRS.2010.2043270
26. Lam, A.Y.S. and Li, V.O.K. Chemical-reactioninspired
metaheuristic for optimization", IEEE Trans.
Evol. Comput., 14(3) pp. 381{399 (2010). DOI:
10.1109/TEVC.2009.2033580
27. Bhattacharjee, K., Bhattacharya, A., and Dey, S.H.N.
Chemical reaction optimisation for di erent economic
dispatch problems", IET Gener. Transm. Distrib.,
8(3), pp. 530{541 (2014). DOI: 10.1049/ietgtd.
2013.0122
28. Bhattacharjee, K., Bhattacharya, A., and Dey, S.H.
Oppositional real coded chemical reaction optimization
for di erent economic dispatch problems", Int. J.
3116 D. Das et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3096{3117
Electr. Power Energy Syst., 55, pp. 378{391 (2014).
DOI: 10.1016/j.ijepes.2013.09.033
29. Rao, R.V., Savsani, V.J., and Vakharia, D.P.
Teaching-learning based optimization: a novel
method for constrained mechanical design optimization
problems", Comp. Aided Design, 43(3), pp. 303{
315 (2011). DOI: 10.1016/j.cad.2010.12.015
30. Bhattacharjee, K., Bhattacharya, A., and Dey, S.H.N.
Teaching learning based optimization for di erent
economic dispatch problems", Scientia Iranica, 21(3),
pp. 870{884 (2013).
31. Banerjee, S., Maity, D., and Chanda, C.K. Teaching
learning based optimization for economic load dispatch
problem considering valve point loading e ect", Int. J.
Electr. Power & Energy Syst., 73, pp. 456{464 (2015).
DOI: 10.1016/j.ijepes.2015.05.036
32. He, X., Rao, Y., and Huang, J. A novel algorithm
for economic dispatch of power systems",
Neurocomputing, 171, pp. 1454{1461 (2016). DOI:
10.1016/j.neucom.2015.07.107
33. Mirjalili, S., Mirjalili, S.M., and Lewis, A. Grey wolf
optimizer", Adv. Eng. Softw., 69, pp. 46{61 (2014).
DOI: 10.1016/j.advengsoft.2013.12.007
34. Kamboj, V.K., Bath, S.K., and Dhillon, J.S. Solution
of non-convex economic load dispatch problem using
grey wolf optimizer", Neural Comput & Applic., 27(5),
pp. 1301{1316 (2006). DOI: 10.1007/s00521-015-1934-
8
35. Rajagopalan, A., Sengoden, V., and Govindasamy,
R. Solving economic load dispatch problems using
chaotic self-adaptive di erential harmony search algorithm",
Int. Trans. Electr. Energ. Syst., 25(5), pp.
845{858 (2014). DOI: 10.1002/etep.1877
36. Mandal, B., Roy, P.K., and Mandal, S. Economic
load dispatch using krill herd algorithm", Int. J.
Electr. Power Energy Syst., 57, pp. 1{10 (2014). DOI:
10.1016/j.ijepes.2013.11.016
37. Barisal, A.K. and Prusty, R.C. Large scale economic
dispatch of power systems using oppositional invasive
weed optimization", Appl. Soft Comput., 29, pp. 122{
137 (2015). DOI: 10.1016/j.asoc.2014.12.014
38. Mirjalili, S. The ant lion optimizer", Adv
Eng Softw., 83, pp. 80{98 (2015). DOI:
10.1016/j.advengsoft.2015.01.010
39. Kamboj, V.K., Bhadoria, A., and Bath, S.K. Solution
of non-convex economic load dispatch problem for
small-scale power systems using ant lion optimizer",
Neural Comput & Applic., 28, pp. 2181{2192 (2016).
DOI: 10.1007/s00521-015-2148-9
40. Subathra, M.S.P., Easter, S.E., Victoire, T.A., et al.
A hybrid with cross-entropy method and sequential
quadratic programming to solve economic load dispatch
problem", IEEE Sys. Journal, 9(3), pp. 1031{
1044 (2015). DOI: 10.1109/JSYST.2013.2297471
41. Al-Betar, M.A., Awadallah, M.A., Khader, A.T.,
et al. Tournament based harmony search algorithm
for non-convex economic load dispatch problem",
Appl. Soft comput., 47, pp. 449{459 (2016). DOI:
10.1016/j.asoc.2016.05.034
42. Ghorbani, N. and Babaei, E. Exchange market algorithm
for economic load dispatch", Int. J. Electr.
Power Energy Syst., 75, pp. 19{27 (2016). DOI:
10.1016/j.ijepes.2015.08.013
43. Mohammadi, F. and Abdi, H. A modi ed crow search
algorithm (MCSA) for solving economic load dispatch
problem", Appl. Soft Comput., 71, pp. 51{65 (2018).
DOI: 10.1016/j.asoc.2018.06.040
44. Cheng, M.Y. and Prayogo, D. Symbiotic organisms
search: A new metaheuristic optimization algorithm",
Computers & Structures, 139, pp. 98{112 (2014). DOI:
10.1016/j.compstruc.2014.03.007
45. Duman, S. Symbiotic organisms search algorithm for
optimal power
ow problem based on valve-point e ect
and prohibited zones", Neural Comput & Applic, 28,
pp. 3571{3585 (2016). DOI: 10.1007/s00521-016-2265-
0
46. Guvenc, U., Duman, S., Sonmez, Y., et al. Symbiotic
organisms search algorithm for economic load dispatch
problem with valve point e ect", Scientia Iranica,
25(6), pp. 3490{3506 (2017).
47. Tizhoosh, H. Opposition-based learning: A
new scheme for machine intelligence", In
Proceedings of the International Conference on
Computational Intelligence for Modelling Control
and Automation, Austria, pp. 695{701 (2005). DOI:
10.1109/CIMCA.2005.1631345
48. Eegezer, M., Simon, D., and Du, D. Optimization", In
Proceedings of the IEEE International Conference on
Oppositional Biogeography-Based Systems, Man and
Cybernetics, San Antonio, TX, USA, pp. 1009{1014
(2009). DOI: 10.1109/CEC.2011.5949792
49. Aragon, V.S., Esquivel, S.C., and Coello, C.A.C.
An immune algorithm with power redistribution
for solving economic load dispatch problems",
Info. Sciences, 295, pp. 609{632 (2014). DOI:
10.1016/j.ins.2014.10.026
50. Ciornei, I. and Kyriakides, E. Ecient hybrid optimization
solution for the economic dispatch with
nonsmooth cost function", In Proc. IEEE Power
Tech, Bucharest, Romania, pp. 1{7 (2009). DOI:
10.1109/PTC.2009.5282062
51. Reddy A.S. and Vaisakh, K. Shued di erential
evolution for large scale economic dispatch", Electr.
Power Syst. Res., 96, pp. 237{245 (2013). DOI:
10.1016/j.epsr.2012.11.010
52. Ciornei, I. and Kyriakides, E. A GA-API solution for
the economic dispatch of generation in power system
operation", IEEE Trans. Power Syst., 27(1), pp. 233{
242 (2011). DOI: 10.1109/TPWRS.2011.2168833
53. Derac, J., Garcia, S., Molina, D., et al. A practical
tutorial on the use of nonparametric statistical
tests as a methodology for comparing evolutionary
D. Das et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3096{3117 3117
and swarm intelligence algorithms", Swarm and Evolutionary
Computation, 1, pp. 3{18 (2011). DOI:
10.1016/j.swevo.2011.02.002
54. Shenkin, D.J., Hand Book of Parametric and No
Parametric Statistical Procedures, 4th Ed., Chapman
& Hall/CRC (2006).