Adaptive control of a cable-actuated parallel manipulator mounted on a platform with differential wheels under payload uncertainty

Document Type : Article

Authors

Robotic Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

Abstract

Cable-actuated parallel Manipulators (CPMs) are widely employed for object handling applications. In order to displace the carried object along the ground to an unlimited distance, the CPMs can be mounted on wheeled mobile robots (WMRs). The derivation of the dynamic equations of motion for this integrated system is presented using Lagrange method. Since in load carrying task, the inertia of the moving load is the main source of uncertainty, an adaptive control approach is considered for the CPM, whereas the WMR uses a feedback linearized sliding mode approach. In order to maintain the end-effector of the CPM in within its relative workspace in the WMR frame, the convergence rate in the two controllers should be similar. Decentralization of the control law can be accomplished if the inertia of the CPM motors are negligible compared with the other inertias of the system. This assumption is shown to be applicable if an introduced index is small enough to have noticeable effect on the tracking error.
 

Keywords

Main Subjects


1. Korayem, M.H., Yousefzadeh, M., and Manteghi, S.  Tracking control and vibration reduction of exible  cable-suspended parallel robots using a robust input  shaper", Scientia Iranica, 25(1), pp. 230{252 (2017).  2. Oh, S.-R., Ryu, J.-C., and Agrawal, S.K. Dynamics  and control of a helicopter carrying a payload using  a cable-suspended robot", Journal of Mechanical Design,  128(5), pp. 1113{1121 (2006).  3. Korayem, M.H., Yousefzadeh, M., and Manteghi,  S. Dynamics and input-output feedback linearization  control of a wheeled mobile cable-driven parallel  robot", Multibody System Dynamics, 40(1), pp. 55{73  (2017).  4. Korayem, M.H., Yousefzadeh, M., and Susani, S.  Dynamic modeling and feedback linearization control  of wheeled mobile cable-driven parallel robot considering  cable sag", Arabian Journal of Science and  Engineering, 42(11), pp. 4779{4788 (2017).  5. Hu, Y., Zhang, J., Wan, Z., et al. Design and analysis  of a 6-DOF mobile parallel robot with 3 limbs",  Journal of Mechanical Science and Technology, 25(12),  pp. 3215{3222 (2011).  6. Shao, Z.-F., Tang, X., Wang, L.-P., et al. Dynamic  modeling and wind vibration control of the feed support  system in FAST", Nonlinear Dynamics, 67(2),  pp. 965{985 (2012).  7. Singh, Y. and Santhakumar, M. Inverse dynamics and  robust sliding mode control of a planar parallel (2-PRP  and 1-PPR) robot augmented with a nonlinear disturbance  observer", Mechanism and Machine Theory, 92,  pp. 29{50 (2015).  8. Asl, R.M., Hagh, Y.Sh., and Palm, R. Robust control  by adaptive non-singular terminal sliding mode",  Engineering Applications of Arti_cial Intelligence, 59,  pp. 205{217 (2017).  9. Yang, J., Su, H., Li, Z., et al. Adaptive control with  a fuzzy tuner for cable-based rehabilitation robot",  International Journal of Control, Automation and  Systems, 14(3), pp. 865{875 (2016).  10. Tuan, L.A., Lee, S.G., Nho, L.C., and Kim, D.H.  Model reference adaptive sliding mode control for  three dimensional overhead cranes", International  Journal of Precision Engineering and Manufacturing,  14(8), pp. 1329{1338 (2013).  11. Sun, G. and Ma, Zh. Practical tracking control of  linear motor with adaptive fractional order terminal  sliding mode control", IEEE/ASME Transactions on  Mechatronics, 22(6), pp. 2643{2653 (2017).  12. Roy, S., Roy, S.B., and Kar, I.N. Adaptiverobust  control of Euler-Lagrange systems with linearly  286 M.H. Korayem and M. Yousefzadeh/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 273{286  parametrizable uncertainty bound", IEEE Transactions  on Control Systems Technology, 26(5), pp. 1842{  1850 (2017).  13. Babaghasabha, R., Khosravi, M.A., and Taghirad,  H.D. Adaptive robust control of fully constrained  cable robots: singular perturbation approach", Nonlinear  Dynamics, 85(1), pp. 607{620 (2016).  14. Utkin, V.I. and Poznyak, A.S. Adaptive sliding mode  control", In Aadvances in Sliding Mode Control, pp.  21{53, Springer, Berlin, Heidelberg (2013).  15. Qian, Y., Fang, Y., and Lu, B. Adaptive robust  tracking control for an o_shore ship-mounted crane  subject to unmatched sea wave disturbances", Mechanical  Systems and Signal Processing, 114, pp. 556{570  (2019).  16. Qi, Z., McInroy, J.E., and Jafari, F. Trajectory  tracking with parallel robots using low chattering,  fuzzy sliding mode controller", Journal of Intelligent  & Robotic Systems, 48(3), pp. 333{356 (2007).  17. El-Ghazaly, G., Gouttefarde, M., and Creuze,  V. Adaptive terminal sliding mode control of a  redundantly-actuated cable-driven parallel manipulator,  cogiro", In Cable-Driven Parallel Robots, pp. 179{  200, Springer International Publishing (2015).  18. Schenk, Ch., Bultho_, H.H., and Masone, C. Robust  adaptive sliding mode control of a redundant  cable driven parallel robot", 19th International IEEE  Conference in System Theory, Control and Computing  (ICSTCC), pp. 427{434 (2015).  19. Torabi, M., Shari_, M., and Vossoughi, Gh. Robust  adaptive sliding mode admittance control of exoskeleton  rehabilitation robots", Scientia Iranica, 25(5), pp.  2628{2642 (2018).  20. Yamamoto, Y. Control and coordination of locomotion  and manipulation of a wheeled mobile manipulator",  PhD Thesis, University of Pennsylvania,  Philadelphia, PA (1994).