Effect of processing time on microstructure of surface and corrosion resistance of coatings resulting from plasma electrolytic oxidation on titanium alloy in hydroxyapatite nano-particles electrolyte

Document Type : Article


1 Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, P.O. Box 1678815811, Iran.

2 Department of Mechanical Engineering, Islamic Azad University, North Tehran Branch, Tehran, Iran.


In this study, the effect of coating processing time on microstructure of surface and corrosion resistance of coatings resulted by plasma electrolytic oxidation (PEO) was investigated on substrate of TiAl6V4 alloy. The coating processes in hydroxyapatite nano-powder electrolytic were carried out in same conditions of constant voltage of 600V and three different times of 125, 250 and 350 seconds. Studying the microstructure of coatings identified that the coating formed in 125 (s) had more compact and steady structure with fine surface cavities and less porosity. X-ray diffraction pattern of coating demonstrates that this coating is consists of oxide phases of titanium (rutile and anatase) and hydroxyapatite. Also, the study of corrosion resistance of coatings by Potentiodynamic polarization and electrochemical impedance spectroscopy in corrosive solution of chloride sodium 3.5% showed that the coating formed in 125 s has the most noble corrosion resitance potential and the least ICorr and finally the highest resistance to corrosion.


Main Subjects

1.Yazici, S.K., Muha_el, M., and Baydogan, M. E_ect  of incorporating carbon nanotubes into electrolyte on  surface morphology of micro arc oxidized Cp-Ti",  Applied Surface Science, 318, pp. 10{14 (2014).  2. Wang, J.H., Wang, J., Lu, Y., Du, M.H., and Han,  F.Zh. E_ects of single pulse energy on the properties  of ceramic coating prepared by micro-arc oxidation on  Ti alloy", Applied Surface Science, 324, pp. 405{413  (2015).  3. Shokouhfar, M., Dehganian, C., and Baradaran, A.  Preparation of ceramic coating on Ti substrate by  plasma electrolytic oxidation in di_erent electrolytes  and evaluation of its corrosion resistance", Applied  Surface Science, 257, pp. 2617{2624 (2011).  4. Hussein, R.O., Nie, X., and Northwood, D.O. A spectroscopic  and microstructural study of oxide coatings  produced on a Ti-6Al-4V alloy by plasma electrolytic  oxidation", Materials Chemistry and Physics, 134, pp.  484{492 (2012).  5. Yao, Zh., Jiang, Zh., Wu, X., and Wu, Zh. E_ects  of ceramic coating by micro-plasma oxidation on the  corrosion resistance of Ti-6Al-4V alloy", Surface and  Coatings Technology, 200, pp. 2445{2450 (2005).  6. Garsivaz Jazi, M.R., Golzar, M.A., Raeissi, K., and  Fazel, M. Evaluation of corrosion and tribocorrosion  of plasma electrolytic oxidation treated Ti-6Al-4V  alloy", Surface and Coatings Technology, 244, pp. 29{  36 (2014).  7. Mu, M., Liang, J., Zhou, X., and Xiao, Q. Onestep  preparation of TiO2/MoS2 composite coating  on Ti6Al4V alloy by plasma electrolytic oxidation  and its tribological properties", Surface and Coatings  Technology, 214, pp. 124{130 (2013).  308 B. Barooghi et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 302{309  8. Aliofkhazraei, M., Gharabagh, R.S., Teimouri, M., and  Ahmadzadeh, M., Darband, B., and Hasannejad, H.  Ceria embedded nanocomposite coating fabricated by  plasma electrolytic oxidation on titanium", Journal of  Alloys and Compounds, 685, pp. 376{383 (2016).  9. Shokouhfar, M. and Allahkaram, S.R. Formation  mechanism and surface characterization of ceramic  composite coatings on pure titanium prepared by  micro-arc oxidation in electrolytes containing nanoparticles",  Surface and Coatings Technology, 291, pp.  396{405 (2016).  10. Qin, Y., Xiong, D., and Li, J. Tribological properties  of laser surface textured and plasma electrolytic oxidation  duplex-treated Ti6Al4V alloy deposited with  MoS2 _lm", Surface and Coatings Technology, 269,  pp. 266{272 (2015).  11. Sabaghi, M. and Fattah-alhosseini, A. E_ect of  KOH concentration on the electrochemical behavior  of coatings formed by pulsed DC micro-arc oxidation  (MAO) on AZ31B Mg alloy", Journal of Alloys and  Compounds, 661, pp. 237{244 (2016).  12. Campanelli, L.C., Durate, L.T., Silva, P.S., and Bolfarini,  C. Fatigue behavior of modi_ed surface of Ti-  6Al-7Nb and CP-Ti by micro-arc oxidation", Materials  and Design, 64, pp. 393{399 (2014)  13. Stojadinovic, S., Radic, N., Vasilic, R., Petkovic,  M., Stefanov, P., and Zekovic, L. Photocatalytic  properties of TiO2/WO3 coatings formed by plasma  electrolytic oxidation of titanium in 12-tungstosilicic  acid", Applied Catalysis, B: Environmental, pp. 334{  341 (2012).  14. Aliasghari, S., N_emcov_a, A., Skeldon, P., and Thomson,  G.E. Inuence of coating morphology on adhesive  bonding of titanium pre-treated by plasma electrolytic  oxidation", Surface and Coatings Technology, 289, pp.  101{109 (2016).  15. Khorasanian, M., Dehghan, A., Shariat, M.H., and  Bahrololoom, M.E. Microstructure and wear resistance  of oxide coatings on Ti-6Al-4V produced by  plasma electrolytic oxidation in an inexpensive electrolyt",  Surface and Coatings Technology, 206, pp.  1495{1502 (2011).  16. Wang, Y.H., Liu, Zh.G., Ouyang, J.H., Wang, Y.M.,  and Zhou, Y. Inuence of electrolyte compositions on  structure and high temperature oxidation resistance of  microarc oxidation coatings formed on Ti2AlNb alloy",  Journal of Alloys and Compounds, 647, pp. 431{437  (2015).  17. Wang, H., Liu, F., Xiong, X., Zeng, X., and Lin, P.  Structure, corrosion resistance and in vitrobioactivity  of Ca and P containing TiO2 coating fabricated on  NiTi alloy by plasma electrolytic oxidation", Applied  Surface Science, 356, pp. 1234{1243 (2015).  18. Park, T.E., Choe, H.C., and Brantley, W.A. Bioactivity  evaluation of porous TiO2 surface formed on  titanium in mixed electrolyte by spark anodization",  Surface and Coatings Technology, 235, pp. 706{713  (2013).  19. Sarbishei, S., Faghihi Sani, M.A., and Mohammadi,  M.R. E_ects of alumina nanoparticles concentration  on microstructure and corrosion behavior of coatings  formed on titanium substrate via PEO process",  Ceramics International Journal, 42, pp. 8789{8797  (2016).  20. Liu, F., Xu, J.L., Wang, F.P., and Zhao, L.C. E_ects  of cathodic voltages on the structure and properties  of ceramic coatings formed on NiTi alloy by micro-arc  oxidation", Materials Chemistry and Physics, 121, pp.  172{177 (2010).  21. Dehnavi, V., Luan, B., Liu, X.Y., Shoesmith, D.W.,  and Rohani, S. Production of ceramic coatings on  AA6061 aliminium alloy using plasma electrolyte oxidation",  Material Science and Technology, 12, pp. 27{  31 (2013).  22. Durdu, S., Deniz,  O.F., Kutbay, I., and Usta, M.  Characterization and formation of hydroxyapatite  on Ti6Al4V coated by plasma electrolytic oxidation",  Journal of Alloys and Compounds, 551, pp. 422{429  (2013).  23. Fattah-Alhosseini, A., Vakili-Azghandi, M., and Keshavarz,  M.K. Inuence of concentrations of KOH  and Na2SiO3 electrolytes on the electrochemical Behavior  of ceramic coatings on 6061 Al alloy processed  by plasma electrolytic oxidation", Acta Metallurgica  Sinica (English Letters), 29, pp. 274{281 (2016).  24. Teng, F.Y., Tai, I., Wang, M.W., Wang, Y.J., Hung,  CH., and Tseng, Ch. The structures, electrochemical  and cell performance of titania _lms formed on titanium  by micro-arc oxidation", Journal of the Taiwan  Institute of Chemical Engineers, 45, pp. 1331{1337  (2014).  25. Yao, Zh., Jiang, Sh., Xin, X., Sun, X., and Wu, X.  Electrochemical impedance spectroscopy of ceramic  coatings on Ti-6Al-4V by micro-plasma oxidation",  Electrochimica Acta, 50, pp. 3273{3279 (2005).  26. Babaei, M., Dehghanian, Ch., and Vanaki, M. E_ect  of additive on electrochemical corrosion properties of  plasma electrolytic oxidation coatings formed on CP Ti  under di_erent processing frequency", Applied Surface  Science, 357(1), pp. 712{720 (2015).