The effect of amine functionalized carbon nanotubes as promising support for platinum nanoparticles on oxygen reduction reaction

Document Type : Article


1 Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563 Tehran, Iran

2 Research Institute of Petroleum Industry (RIPI), Azadi sport complex West Blvd., Tehran, Iran


In this study, multiwall carbon nanotubes (MWCNTs) were chemically oxidized (OMWCNTs) and functionalized with ethylenediamine (EDAMWCNTs) and diethylenetriamine (DETAMWCNTs) as amine precursors. The electrocatalysts were prepared through deposition of Pt nanoparticles on the functionalized MWCNTs by polyol method. The average size of Pt nanoparticles was found to lie between 4 and 5 nm. Cyclic Voltammetry (CV), Rotating Disk Electrode (RDE), Electrochemical Impedance Spectroscopy (EIS), and Chronoamperometry (CA) were employed to evaluate the electrochemical properties of the electrocatalysts. The Electrochemical active surface area (EASA), number of electron transferred (n), and onset potential for EDAMWCNTs and DETAMWCNTs were found to be about 32.2 and 45.8 (m2/g Pt), 4.03 and 4.10 (electron per oxygen molecule), and 0.986 and 0.997 (V vs RHE), respectively. However, in the case of Pt-OMWCNTs the above mentioned electrochemical characteristics were calculated to be 24.2 (m2/g Pt), 3.34 (electron per oxygen molecule), and 0.824 (V vs RHE), respectively. Moreover, EIS and CA indicate that introducing amine functional groups lead to less electron transfer resistance and better electrocatalytic activity and stability during oxygen reduction. The results show that the higher number of nitrogen atoms within the amine functional groups the more enhanced electrocatalytic performance of Pt nanoparticles in ORR.


Main Subjects

1. Andujar, J., and Segura, F. Fuel cells: History and
updating. A walk along two centuries", Renew Sust
Energ Rev, 13(9), pp. 2309-2322 (2009).
2. Costa, R. and Camacho, J. The dynamic and steady
state behavior of a PEM fuel cell as an electric
energy source", J Power Sources, 161(2), pp. 1176-
1182 (2006).
3. Girishkumar, G., McCloskey, B., Luntz, A., Swanson,
S., and Wilcke, W. Lithium- air battery: promise and
challenges", J of Phys Chem Lett, 1(14), pp. 2193-2203
4. Hassani, S.S., Ganjali, M., Samiee, L., Rashidi, A.,
Tasharro , S., Yadegari, A., Shoghi, F., and Martel,
R. Comparative study of various types of metal-free N
and S co-doped porous graphene for high performance
oxygen reduction reaction in alkaline solution", J
Nanosci and Nanotechno, 18(7), pp. 4565-4579 (2018).
5. Wurfel, P. Solar energy conversion with hot electrons
from impact ionisation", SOL ENERG MAT SOL C,
46(1), pp. 43-52 (1997).
6. Zhang, L.L. and Zhao, X. Carbon-based materials as
supercapacitor electrodes", Chem Soc Rev, 38(9), pp.
2520-2531 (2009).
7. Shayeh, J.S., Ehsani, A., Naeemy, A., Shiri, H.M.,
Fatemi, F., Yadegari, A., and Omidi, M. Electrosynthesis
and characterization of poly aniline/garnet
nanoparticles for high-performance electrochemical capacitors",
Ionics, 24(2), pp. 505-511 (2018).
8. Tajik, S., Dubal, D.P., Gomez-Romero, P., Yadegari,
A., Rashidi, A., Nasernejad, B., and Asiri, A.M.
Nanostructured mixed transition metal oxides for
high performance asymmetric supercapacitors: Facile
synthetic strategy", Int J Hydrogen Energ, 42(17), pp.
12384-12395 (2017).
9. Mustain, W.E. and Prakash, J. Kinetics and mechanism
for the oxygen reduction reaction on polycrystalline
cobalt-palladium electrocatalysts in acid
media", J Power Sources, 170(1), pp. 28-37 (2007).
10. Wang, C., Daimon, H., Lee, Y., Kim, J., and Sun,
S. Synthesis of monodisperse Pt nanocubes and their
enhanced catalysis for oxygen reduction", J Am Chem
Soc, 129(22), pp. 6974-6975 (2007).
11. Gasteiger, H.A., Kocha, S.S., Sompalli, B., and Wagner,
F.T. Activity benchmarks and requirements for
Pt, Pt-alloy, and non-Pt oxygen reduction catalysts
for PEMFCs", Appl Catal B: Environ, 56(1), pp. 9-35
12. Yu, X. and Ye, S. Recent advances in activity and
durability enhancement of Pt/C catalytic cathode in
PEMFC: Part II: Degradation mechanism and durability
enhancement of carbon supported platinum catalyst",
J Power Sources, 172(1), pp. 145-154 (2007).
13. Yadegari, A., Samiee, L., Tasharro , S., Tajik, S.,
Rashidi, A., Shoghi, F., Rasoulianboroujeni, M.,
Tahriri, M., Rowley-Neale, S.J., and Banks, C.E.,
Nitrogen doped nanoporous graphene: an ecient
metal-free electrocatalyst for the oxygen reduction
reaction", RSC Adv, 7(87), pp. 55555-55566 (2017).
14. Kannan, R., Kakade, B.A., and Pillai, V.K. Polymer
electrolyte fuel cells using na on-based composite
membranes with functionalized carbon nanotubes",
Angew Chem Int Edit, 47(14), pp. 2653-2656 (2008).
15. Tzitzios, V., Georgakilas, V., Oikonomou, E., Karakassides,
M., and Petridis, D. Synthesis and characterization
of carbon nanotube/metal nanoparticle composites
well dispersed in organic media", Carbon, 44(5),
pp. 848-853 (2006).
16. Blackburn, J.L., Barnes, T.M., Beard, M.C., Kim, Y.-
H., Tenent, R.C., McDonald, T.J., To, B., Coutts,
T.J., and J. Heben, M. Transparent conductive singlewalled
carbon nanotube networks with precisely tunable
ratios of semiconducting and metallic nanotubes",
Acs Nano, 2(6), pp. 1266-1274 (2008).
17. Georgakilas, V., Gournis, D., Tzitzios, V., Pasquato,
L., Guldi, D.M., and Prato, M. Decorating carbon
nanotubes with metal or semiconductor nanoparticles",
J Mat Chem, 17(26), pp. 2679-2694 (2007).
18. Maass, S., Finsterwalder, F., Frank, G., Hartmann, R.,
and Merten, C. Carbon support oxidation in PEM
fuel cell cathodes", J Power Sources, 176(2), pp. 444-
451 (2008).
19. Alexeyeva, N. and Tammeveski, K. Electrochemical
reduction of oxygen on multiwalled carbon nanotube
modi ed glassy carbon electrodes in acid media", Electrochem
Solid State Lett, 10(5), pp. F18-F21 (2007).
20. Alexeyeva, N., Tammeveski, K., Lopez-Cudero, A.,
Solla-Gullon, J., and Feliu, J. Electroreduction of
A. Yadegari et al./Scientia Iranica, Transactions C: Chemistry and ... 25 (2018) 3354{3367 3365
oxygen on Pt nanoparticle/carbon nanotube nanocomposites
in acid and alkaline solutions", Electrochim
Acta, 55(3), pp. 794-803 (2010).
21. Jukk, K., Kozlova, J., Ritslaid, P., Sammelselg,
V., Alexeyeva, N., and Tammeveski, K. Sputterdeposited
Pt nanoparticle/multi-walled carbon nanotube
composite catalyst for oxygen reduction reaction",
J Electroanal Chem, 708(1), pp. 31-38 (2013).
22. Kaempgen, M. and Roth, S. Ultra microelectrodes
from MWCNT bundles", Synthetic Met, 152(1), pp.
353-356 (2005).
23. Chen, Y.,Wang, J., Liu, H., Li, R., Sun, X., Ye, S., and
Knights, S. Enhanced stability of Pt electrocatalysts
by nitrogen doping in CNTs for PEM fuel cells",
Electrochem Commun, 11(10), pp. 2071-2076 (2009).
24. Li, H., Liu, H., Jong, Z., Qu, W., Geng, D., Sun, X.,
andWang, H. Nitrogen-doped carbon nanotubes with
high activity for oxygen reduction in alkaline media",
Int J Hydrogen Rnerg, 36(3), pp. 2258-2265 (2011).
25. McClure, J.P., Thornton, J.D., Jiang, R., Chu, D.,
Cuomo, J.J., and Fedkiw, P.S. Oxygen reduction
on metal-free nitrogen-doped carbon nanowall electrodes",
J Electrochem Soc, 159(11), pp. F733-F742
26. Su, F., Tian, Z., Poh, C. K., Wang, Z., Lim, S.H.,
Liu, Z., and Lin, J. Pt nanoparticles supported
on nitrogen-doped porous carbon nanospheres as an
electrocatalyst for fuel cells", Chem of Mater, 22(3),
pp. 832-839 (2009).
27. Yu, D., Zhang, Q., and Dai, L. Highly ecient metalfree
growth of nitrogen-doped single-walled carbon
nanotubes on plasma-etched substrates for oxygen
reduction", J Am Chem Soc, 132(43), pp. 15127-15129
28. Zhao, A., Masa, J., Schuhmann, W., and Xia, W.
Activation and stabilization of nitrogen-doped carbon
nanotubes as electrocatalysts in the oxygen reduction
reaction at strongly alkaline conditions", J Phys Chem
C, 117(46), pp. 24283-24291 (2013).
29. Ebbesen, T.W., Hiura, H., Bisher, M.E., Treacy,
M.M., Shreeve-Keyer, J. L., and Haushalter, R.C.
Decoration of carbon nanotubes", Adv Mater, 8(2),
pp. 155-157 (1996).
30. Liu, Z., Lin, X., Lee, J.Y., Zhang, W., Han, M.,
and Gan, L.M. Preparation and characterization of
platinum-based electrocatalysts on multiwalled carbon
nanotubes for proton exchange membrane fuel cells",
Langmuir, 18(10), pp. 4054-4060 (2002).
31. Yang, C., Hu, X., Wang, D., Dai, C., Zhang, L.,
Jin, H., and Agathopoulos, S. Ultrasonically treated
multi-walled carbon nanotubes (MWCNTs) as PtRu
catalyst supports for methanol electrooxidation", J of
Power Sources, 160(1), pp. 187-193 (2006).
32. Dudin, P.V., Unwin, P.R., and Macpherson, J.V.
Electrochemical nucleation and growth of gold
nanoparticles on single-walled carbon nanotubes: New
mechanistic insights", J Phys Chem C, 114(31), pp.
13241-13248 (2010).
33. Rashidi, A., Akbarnejad, M., Khodadadi, A., Mortazavi,
Y., and Ahmadpourd, A. Single-wall carbon
nanotubes synthesized using organic additives to Co-
Mo catalysts supported on nanoporous MgO", Nanotechnology,
18(31), p. 315605 (2007).
34. Chetty, R., Kundu, S., Xia, W., Bron, M., Schuhmann,
W., Chirila, V., Brandl, W., Reinecke, T., and Muhler,
M. PtRu nanoparticles supported on nitrogen-doped
multiwalled carbon nanotubes as catalyst for methanol
electrooxidation", Electrochim Acta, 54(17), pp. 4208-
4215 (2009).
35. Fu, X., Yu, H., Peng, F., Wang, H., and Qian,
Y. Facile preparation of RuO2/CNT catalyst by a
homogenous oxidation precipitation method and its
catalytic performance", Appl Catal A: Gen, 321(2),
pp. 190-197 (2007).
36. Liu, J., Wang, H., Wu, C., Zhao, Q., Wang, X., and Yi,
L. Preparation and characterization of nanoporous
carbon-supported platinum as anode electrocatalyst
for direct borohydride fuel cell", Int J Hydrogen Energ,
39(12), pp. 6729-6736 (2014).
37. Varela, F.R. and Savadogo, O. Catalytic activity of
carbon-supported electrocatalysts for direct ethanol
fuel cell applications", J Electrochem Soc, 155(6), pp.
B618-B624 (2008).
38. Pozio, A., De Francesco, M., Cemmi, A., Cardellini,
F., and Giorgi, L. Comparison of high surface Pt/C
catalysts by cyclic voltammetry", J Power Sources,
105(1), pp. 13-19 (2002).
39. Lambert, J.-F. and Che, M. The molecular approach
to supported catalysts synthesis: state of the art and
future challenges", J MolCatal A: Chem, 162(1), pp.
5-18 (2000).
40. Dubau, L., Hahn, F., Coutanceau, C., Leger, J.-M.,
and Lamy, C. On the structure e ects of bimetallic
PtRu electrocatalysts towards methanol oxidation", J
Electroanal Chem, 554(2), pp. 407-415 (2003).
41. Gao, W., Alemany, L.B., Ci, L., and Ajayan, P.M.
New insights into the structure and reduction of
graphite oxide", Nature Chem, 1(5), pp. 403-408
42. Omidi, M., Yadegari, A., and Tayebi, L. Wound dressing
application of pH-sensitive carbon dots/chitosan
hydrogel", RSC Adv, 7(18), pp. 10638-10649 (2017).
43. Huang, M., Xu, X., Yang, H., and Liu, S.
Electrochemically-driven and dynamic enhancement
of drug metabolism via cytochrome P450 microsomes
on colloidal gold/graphene nanocomposites", RSC
Adv, 2(33), pp. 12844-12850 (2012).
44. Liu, K., Zhang, J., Yang, G., Wang, C., and Zhu,
J.-J. Direct electrochemistry and electrocatalysis of
hemoglobin based on poly (diallyldimethylammonium
chloride) functionalized graphene sheets/room temperature
ionic liquid composite lm", ElectrochemCommun,
12(3), pp. 402-405 (2010).
3366 A. Yadegari et al./Scientia Iranica, Transactions C: Chemistry and ... 25 (2018) 3354{3367
45. Wang, S., Yu, D., Dai, L., Chang, D.W., and Baek, J.-
B. Polyelectrolyte-functionalized graphene as metalfree
electrocatalysts for oxygen reduction", ACS Nano,
5(8), pp. 6202-6209 (2011).
46. Mawhinney, D.B., Naumenko, V., Kuznetsova, A.,
Yates, J.T., Liu, J., and Smalley, R. Infrared spectral
evidence for the etching of carbon nanotubes: ozone
oxidation at 298 K", J Am Chem Soc, 122(10), pp.
2383-2384 (2000).
47. Ababou-Girard, S., Sabbah, H., Fabre, B., Zellama,
K., Solal, F., and Godet, C. Covalent grafting of
organic layers on sputtered amorphous carbon: Surface
preparation and coverage density", J Phys Chem C,
111(7), pp. 3099-3108 (2007).
48. Jiang, W., Nadeau, G., Zaghib, K., and Kinoshita, K.
Thermal analysis of the oxidation of natural graphitee
ect of particle size", Thermochim Acta, 351(1-2),
pp. 85-93 (2000).
49. Kim, S.Y., Lee, J.C., Na, W., Park, J., Seo, K., and
Kim, B. N-doped double-walled carbon nanotubes
synthesized by chemical vapor deposition", Chem Phys
Lett, 413(4-6), pp. 300-305 (2005).
50. Ago, H., Kugler, T., Cacialli, F., Salaneck, W.R.,
Sha er, M.S., Windle, A.H., and Friend, R.H. Work
functions and surface functional groups of multiwall
carbon nanotubes", J Phys Chem B, 103(38), pp.
8116-8121 (1999).
51. Baker, S.E., Cai, W., Lasseter, T.L., Weidkamp,
K.P., and Hamers, R.J. Covalently bonded adducts
of deoxyribonucleic acid (DNA) oligonucleotides with
single-wall carbon nanotubes: synthesis and hybridization",
Nano Lett, 2(12), pp. 1413-1417 (2002).
52. Nath, M., Satishkumar, B., Govindaraj, A., Vinod,
C., and Rao, C.N.R. Production of bundles of aligned
carbon and carbon-nitrogen nanotubes by the pyrolysis
of precursors on silica-supported iron and cobalt catalysts",
Chem Phys Lett, 322(5), pp. 333-340 (2000).
53. Lin, Y., Rao, A.M., Sadanadan, B., Kenik, E.A., and
Sun, Y.-P. Functionalizing multiple-walled carbon
nanotubes with aminopolymers", Journal Phys Chem
B, 106(6), pp. 1294-1298 (2002).
54. Moulder, J., Stickle, W., Sobol, P., and Bomben, K.,
Handbook of X-Ray Photoelectron Spectroscopy, pp.
565-575, Perkin-Elmer Corporation, USA (1992).
55. Markovic, N. and Ross, P.N. Surface science studies of
model fuel cell electrocatalysts", Surf Sci Rep, 45(4),
pp. 117-229 (2002).
56. Ghorbani-Vaghei, R., Hemmati, S., Hashemi, M., and
Veisi, H. Diethylenetriamine-functionalized singlewalled
carbon nanotubes (SWCNTs) to immobilization
palladium as a novel recyclable heterogeneous
nanocatalyst for the Suzuki-Miyaura coupling reaction
in aqueous media", CR Chim, 18(6), pp. 636-643
57. Mugadza, T. and Nyokong, T. Covalent linking
of ethylene amine functionalized single-walled
carbon nanotubes to cobalt (II) tetracarboxylphthalocyanines
for use in electrocatalysis", Synthetic
Met, 160(19), pp. 2089-2098 (2010).
58. Koenigsmann, C., Zhou, W.-P., Adzic, R.R., Sutter,
E., and Wong, S.S. Size-dependent enhancement of
electrocatalytic performance in relatively defect-free,
processed ultrathin platinum nanowires", Nano Lett,
10(8), pp. 2806-2811 (2010).
59. Subhramannia, M. and Pillai, V.K. Shape-dependent
electrocatalytic activity of platinum nanostructures",
J Mat Chem, 18(48), pp. 5858-5870 (2008).
60. Yang, T., Ling, H., Lamonier, J.-F., Jaroniec, M.,
Huang, J., Monteiro, M.J., and Liu, J. A synthetic
strategy for carbon nanospheres impregnated with
highly monodispersed metal nanoparticles", NPG Asia
Mate, 8(2), p. e240 (2016).
61. Mayrhofer, K., Strmcnik, D., Blizanac, B.B., Stamenkovic,
V., Arenz, M., and Markovic, N.M. Measurement
of oxygen reduction activities via the rotating
disc electrode method: From Pt model surfaces to
carbon-supported high surface area catalysts", Electrochim
Acta, 53(7), pp. 3181-3188 (2008).
62. Reyes-Rodriguez, J., Godnez-Salomon, F., Leyva, M.,
and Solorza-Feria, O. RRDE study on Co Pt/C coreshell
nanocatalysts for the oxygen reduction reaction",
Int J of Hydrogen Energ, 38(28), pp. 12634-12639
63. Mayrhofer, K., Strmcnik, D., Blizanac, B., Stamenkovic,
V., Arenz, M., and Markovic, N. Measurement
of oxygen reduction activities via the rotating
disc electrode method: From Pt model surfaces to
carbon-supported high surface area catalysts", Electrochim
Acta, 53(7), pp. 3181-3188 (2008).
64. Mayrhofer, K., Blizanac, B., Arenz, M., Stamenkovic,
V., Ross, P., and Markovic, N. The impact of geometric
and surface electronic properties of Pt-catalysts
on the particle size e ect in electrocatalysis", J Phys
Chem B, 109(30), pp. 14433-14440 (2005).
65. Ocampo, A., Castellanos, R., and Sebastian, P. Kinetic
study of the oxygen reduction reaction on Ru  y
(CO)  n in acid medium with di erent concentrations
of methanol", J of New Mat for Elect Sys, 5(3), pp.
163-168 (2002).
66. Cheng, F., Su, Y., Liang, J., Tao, Z., and Chen, J.
MnO2-based nanostructures as catalysts for electrochemical
oxygen reduction in alkaline media", Chem
Mater, 22(3), pp. 898-905 (2009).
67. Xie, Z. and Holdcroft, S. Polarization-dependent mass
transport parameters for orr in per
uorosulfonic acid
ionomer membranes: an EIS study using microelectrodes",
J of Electroanal Chem, 568(3), pp. 247-260
68. Du, C., Zhao, T., and Yang, W. E ect of methanol
crossover on the cathode behavior of a DMFC: A halfcell
investigation", Electrochim Acta, 52(16), pp. 5266-
5271 (2007).
A. Yadegari et al./Scientia Iranica, Transactions C: Chemistry and ... 25 (2018) 3354{3367 3367
69. Piela, P., Fields, R., and Zelenay, P. Electrochemical
impedance spectroscopy for direct methanol fuel cell
diagnostics", J of the Electrochem Soc, 153(10), pp.
A1902-A1913 (2006).
70. Morales-Acosta, D., De La Fuente, D.L., Arriaga, L.,
Gutierrez, G.V., and Varela, F.R. Electrochemical
investigation of Pt-Co/MWCNT as an alcohol-tolerant
ORR catalyst for direct oxidation fuel cells", Int.
Electroche Soc, 6(1), p. 1835 (2011).