Optimizing decisions on under- and out-of-warranty products in a finite planning horizon

Document Type : Article


Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran.


In this paper, we consider a manufacturer that produces products in a finite horizon time and sells products with non-renewing free replacement warranty policy. The manufacturer is responsible to provide spare parts for failed products, whether the products are under or out of warranty. Previous research on warranty optimization has focused on maximizing manufacturer profit without considering the spare part market for out-of-warranty products. This study proposes a novel nonlinear model that maximizes manufacturer profit by optimization of price, warranty length and spare part inventory for under- and out-of-warranty products in a manufacturing/remanufacturing system. Due to the model’s unique structure, we propose a new two-stage approach that combines metaheuristic and an exact method, in which the first stage is to determine product’s prices and warranty length with metaheuristic algorithm and in the second stage the remaining inventory related problem is transferred to a Minimum Cost Network Flow Problem which is solved for spare part inventory control. To illustrate the effectiveness of the suggested method, the model is solved for a case study of Iranian SANAM electronic company with two different metaheuristic algorithms and a sensitivity analysis is conducted to study the effect of various parameters on the optimal solution.


Main Subjects

1. Murthy, D.N.P. and Blischke, W.R. Strategic warranty  management: a life-cycle approach", IEEE T.  Eng. Manage., 47(1), pp. 40{54 (2000).  2. Nguyen, D. and Murthy, D.P. Optimal burn-in time  to minimize cost for products sold under warranty",  AIIE. Trans., 14(3), pp. 167{174 (1982).  3. Murthy, D.N.P. Product warranty and reliability",  Ann. Oper. Res., 143(1), pp. 133{146 (2006).  4. Zhou, Z., Li, Y., and Tang, K. Dynamic pricing and  warranty policies for products with _xed lifetime",  Eur. J. Oper. Res., 196(3), pp. 940{948 (2009).  5. Lin, P.-C., Wang, J., and Chin, S.-S. Dynamic  optimisation of price, warranty length and production  rate", Int. J. Syst. Sci., 40(4), pp. 411{420 (2009).  6. Wu, C.-C., Lin, P.-C., and Chou, C.-Y. Determination  of price and warranty length for a Gamma lifetime  distributed product", J. of Inf. and Opt. Sci., 28(3),  pp. 335{355 (2007).  7. Wu, C.-C., Lin, P.-C., and Chou, C.-Y. Determination  of price and warranty length for a normal lifetime  distributed product", Int. J. Prod. Econ., 102(1), pp.  95{107 (2006).  8. Glickman, T.S. and Berger, P.D. Optimal price and  protection period decisions for a product under warranty",  Manage. Sci., 22(12), pp. 1381{1390 (1976).  9. Nasrollahi, M. and Asgharizadeh, E. Pro-rata warranty  pricing model with risk-averse buyers", The  Modares. J. of Manage. Res. in Iran, 20(1), pp. 131{  154 (2016).  10. Lin, P.-C. and Shue, L.-Y. Application of optimal  control theory to product pricing and warranty with  free replacement under the inuence of basic lifetime  distributions", Comput. Ind. Eng., 48(1), pp. 69{82  (2005).  11. Huang, H.-Z., Liu, Z.-J., and Murthy, D. Optimal  reliability, warranty and price for new products", Iie.  Trans., 39(8), pp. 819{827 (2007).  12. Manna, D.K. Price-warranty length decision with  Glickman-Berger model", Int. J. of Rel. and Saf., 2(3),  pp. 221{233 (2008).  13. Wu, C.-C., Chou, C.-Y., and Huang, C. Optimal  price, warranty length and production rate for free  replacement policy in the static demand market",  Omega, 37(1), pp. 29{39 (2009).  14. Fang, C.-C. and Huang, Y.-S. A study on decisions  of warranty, pricing, and production with insu_cient  information", Comput. Ind. Eng., 59(2), pp. 241{250  (2010).  15. Sha_ee, M. and Chukova, S. Optimal upgrade strategy,  warranty policy and sale price for second-hand  products", Appl. Stoch. Model. Bus., 29(2), pp. 157{  169 (2013).  16. Faridimehr, S. and Niaki, S. Optimal strategies for  price, warranty length, and production rate of a new  product with learning production cost", Scientia Iranica,  Transactions E, Industrial Engineering, 20(6), pp.  2247{2258 (2013).  17. Mahmoudi, A. and Shavandi, H. Analyzing price,  warranty length, and service capacity under a fuzzy  environment: Genetic algorithm and fuzzy system",  Scientia Iranica, 20(3), pp. 975{982 (2013).  18. Tsao, Y.C., Teng, W.G., Chen, R.S., and Chou, W.Y.  Pricing and inventory policies for hi-tech products  under replacement warranty", INT. J. Sysy. Sci.,  45(6), pp. 1255{1267 (2014).  19. Wei, J., Zhao, J., and Li, Y. Price and warranty  period decisions for complementary products with horizontal  _rms' cooperation/noncooperation strategies",  J. Clean. Prod., 105, pp. 86{102 (2015).  20. Yazdian, S.A., Shahanaghi, K., and Makui, A. Joint  optimisation of price, warranty and recovery planning  in remanufacturing of used products under linear and  non-linear demand, return and cost functions", Int. J.  Syst. Sci., 47(5), pp. 1155{1175 (2016).  21. Murthy, D., Solem, O., and Roren, T. Product  warranty logistics: Issues and challenges", Eur. J.  Oper. Res., 156(1), pp. 110{126 (2004).  514 M. Afsahi et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 494{515  22. Gallagher, T., Mitchke, M.D., and Rogers, M.C.  Pro_ting from spare parts", The McKinsey Quarterly,  2, pp. 1{4 (2005).  23. Kim, B. and Park, S. Optimal pricing, EOL (end of  life) warranty, and spare parts manufacturing strategy  amid product transition", Eur. J. Oper. Res., 188(3),  pp. 723{745 (2008).  24. Chari, N., Diallo, C., Venkatadri, U., and Khatab, A.  Modeling and analysis of a warranty policy using new  and reconditioned parts", Appl. Stoch. Model. Bus.,  32(4), pp. 539{553 (2016).  25. Agrawal, S., Singh, R.K., and Murtaza, Q. A literature  review and perspectives in reverse logistics",  Resour. Conserv. Recy., 97, pp. 76{92 (2015).  26. Pokharel, S. and Mutha, A. Perspectives in reverse  logistics: a review", Resour. Conserv. Recy., 53(4),  pp. 175{182 (2009).  27. Wang, K.-H. and Tung, C.-T. Construction of a  model towards EOQ and pricing strategy for gradually  obsolescent products", Appl. Math. Comput., 217(16),  pp. 6926{6933 (2011).  28. Fulkerson, D.R. An out-of-kilter method for minimalcost  ow problems", J. of the Soc. for Ind. and Ap.  Math., 9(1), pp. 18{27 (1961).  29. Kashan, A.H. A new metaheuristic for optimization:  optics inspired optimization (OIO)", Comput. Oper.  Res., 55, pp. 99{125 (2015).  30. Jalili, S. and Husseinzadeh Kashan, A. Optimum  discrete design of steel tower structures using optics  inspired optimization method", The Str. Des. of Tall  and Spe. Build., 27(9), p. e1466 (2018).  31.  Ozdemir, M.T. and  Ozturk, D. Comparative performance  analysis of optimal PID parameters tuning  based on the optics inspired optimization methods for  automatic generation control", Energies, 10(12), p.  2134 (2017).  32.  Ozdemir, M.T. and  Ozturk, D., Optimal PID Tuning  for Load Frequency Control Using Optics Inspired  Optimization Algorithm, ICNES (2016).  33. Husseinzadeh Kashan, A. An e_ective algorithm for  constrained optimization based on optics inspired optimization  (OIO)", Comput. Aided Design., 63, pp. 52{  71 (2015).  34. Mohammadi, M. and Musa, S.N. Bahreininejad, optimization  of economic lot scheduling problem with  backordering and shelf-life considerations using calibrated  metaheuristic algorithms", Comput. Aided.  Design., 251(Supplement C), pp. 404{422 (2015).  35. Kuo, R.J., Lee, Y.H., Zulvia, F.E., and Tien, F.C.  Solving bi-level linear programming problem through  hybrid of immune genetic algorithm and particle  swarm optimization algorithm", Appl. Math. Comput.,  266(Supplement C), pp. 1013{1026 (2015).  36. Yang, M.-F. and Lin, Y. Applying the linear particle  swarm optimization to a serial multi-echelon inventory  model", Expert. Syst. Appl., 37(3), pp. 2599{2608  (2010).  37. Mousavi, S.M., Bahreininejad, A., Musa, S.N., and  Yusof, F. A modi_ed particle swarm optimization for  solving the integrated location and inventory control  problems in a two-echelon supply chain network", J.  Intell. Manuf., 28(1), pp. 191{206 (2017).  38. Majumder, P., Bera, U.K., and Maiti, M. An EPQ  model for two-warehouse in unremitting release pattern  with two-level trade credit period concerning  both supplier and retailer", Appl. Math. Comput.,  274(Supplement C), pp. 430{458 (2016).  39. Bhunia, A.K. and Shaikh, A.A. An application of  PSO in a two-warehouse inventory model for deteriorating  item under permissible delay in payment with  di_erent inventory policies", Appl. Math. Comput.,  256(Supplement C), pp. 831{850 (2015).  40. Jiang, Y., Hu, T., Huang, C., and Wu, X. An improved  particle swarm optimization algorithm", Appl.  Math. Comput., 193(1), pp. 231{239 (2007).  41. Kennedy, J. and Eberhart, R. Particle Swarm Optimization  (PSO)", In Proc. IEEE International Conference  on Neural Networks, Perth, Australia (1995).  42. Huang, W., Kulkarni, V., and Swaminathan, J.M.  Coordinated inventory planning for new and old  products under warranty", Probab. Eng. Inform. SC.,  21(02), pp. 261{287 (2007).  43. Yeo, W.M. and Yuan, X.-M. Optimal Inventory  Policy For Products With Warranty Agreements. in  Industrial Electronics", ISIE 2007. IEEE International  Symposium on, IEEE (2007).  44. Khawam, J., Hausman, W.H., and Cheng, D.W.  Warranty inventory optimization for Hitachi global  storage technologies", Inc. Interfaces, 37(5), pp. 455{  471 (2007).  45. Darghouth, M.N., Ait-kadi, D., and Chelbi, A. Joint  optimization of design, warranty and price for products  sold with maintenance service contracts", Reliab. Eng.  Syst. Safe., 165, pp. 197{208 (2017).  46. Shi, Y. and Eberhart, R.C. Empirical study of particle  swarm optimization", In evolutionary computation",  CEC 99. Proceedings of the 1999 Congress on,  IEEE (1999).