Molecular dynamics simulations of sessile and pendant droplets' shape on inclined and curved surfaces

Document Type : Article


School of Mechanical Engineering, Shiraz University, Shiraz, P.O. Box 71936-16548, Iran


In this study, shape of water droplets with different sizes on various inclined smooth surfaces is simulated numerically and advancing and receding contact angles are determined by using the molecular dynamics approach. Experimental measurements are also carried out to validate the numerical predictions of droplet shape on inclined surfaces. Based on the verified code, shape of water droplets in different sizes around smooth circular cylinders with various diameters is simulated. Furthermore, advancing and receding contact angles along with the hysteresis values of the sessile and pendant droplets with various sizes around the cylinders are evaluated. Finally, based on the numerical results, two correlations are developed to predict advancing and receding contact angles of droplets on the circular cylinders. According to the results, maximum advancing and minimum receding angles take place on both sides of the cylinder on a horizontal line passes through the cylinder center. As a result, contact angle hysteresis reaches its maximum value in these two positions. In addition, advancing and receding angles have the same values on the top and bottom of the cylinder. Moreover, droplet size and cylinder diameter have minor effect while drop position has major effect on the shape of droplets over the cylinder.


Main Subjects

1. Rose, J. Dropwise condensation theory and experiment:
a review", Proc. Inst. Mech. Eng., Pt. A: J.
Power Energy, 216(2), pp. 115-128 (2002).
2. Abu-Orabi, M. Modeling of heat transfer in dropwise
condensation", Int. J. Heat Mass Trans., 41(1), pp.
81-87 (1998).
3. Wu, Y.-T., Yang, C.-X., and Yuan, X.-G. Drop
distributions and numerical simulation of dropwise
condensation heat transfer", Int. J. Heat Mass Trans.,
44(23), pp. 4455-4464 (2001).
4. Vemuri, S. and Kim, K. An experimental and theoretical
study on the concept of dropwise condensation",
Int. J. Heat Mass Trans., 49(3-4), pp. 649-657 (2006).
5. Rausch, M., Froba, A., and Leipertz, A. Dropwise
condensation heat transfer on ion implanted aluminum
surfaces", Int. J. Heat Mass Trans., 51(5-6), pp. 1061-
1070 (2008).
6. Mei, M., Yu, B., Cai, J., and Luo, L. A fractal analysis
of dropwise condensation heat transfer", Int. J. Heat
Mass Trans., 52(21-22), pp. 4823-4828 (2009).
7. Do Hong, S., Ha, M.Y., and Balachandar, S. Static
and dynamics contact angles of water droplet on a
solid surface using molecular dynamics simulation", J.
Colloid Interface Sci., 339(1), pp. 187-195 (2009).
8. Rausch, M., Leipertz, A., and Froba, A. Dropwise
condensation of steam on ion implanted titanium
surfaces", Int. J. Heat Mass Trans., 53(1-3), pp. 423-
430 (2010).
9. Lara, J.R. and Holtzapple, M.T. Experimental investigation
of dropwise condensation on hydrophobic
heat exchangers part I: Dimpled-sheets", Desalination,
278(1-3), pp. 165-172 (2011).
10. Lara, J.R. and Holtzapple, M.T. Experimental investigation
of dropwise condensation on hydrophobic heat
exchangers. Part II: E ect of coatings and surface geometry",
Desalination, 280(1-3), pp. 363-369 (2011).
11. Mei, M., Yu, B., Zou, M., and Luo, L. A numerical
study on growth mechanism of dropwise condensation",
Int. J. Heat Mass Trans., 54(9-10), pp. 2004-
2013 (2011).
12. Guilizzoni, M. Drop shape visualization and contact
angle measurement on curved surfaces", J. Colloid
Interface Sci., 364(1), pp. 230-236 (2011).
13. Park, J.-Y., Ha, M.-Y., Choi, H.-J., Hong, S.-D., and
Yoon, H.-S. A study on the contact angles of a water
droplet on smooth and rough solid surfaces", J. Mech.
Sci. Technol., 25(2), p. 323 (2011).
14. Sergi, D., Scocchi, G., and Ortona, A. Molecular
dynamics simulations of the contact angle between
water droplets and graphite surfaces", Fluid Phase
Equilib., 332, pp. 173-177 (2012).
15. Bonner III, R.W. Correlation for dropwise condensation
heat transfer: Water, organic
uids, and inclination",
Int. J. Heat Mass Trans., 61, pp. 245-253
16. Eral, H., 't Mannetje, D., and Oh, J. Contact angle
hysteresis: a review of fundamentals and applications",
Colloid Polym. Sci., 291(2), pp. 247-260 (2013).
17. Santiso, E.E., Herdes, C., and Muller, E.A. On the
calculation of solid-
uid contact angles from molecular
dynamics", Entropy, 15(9), pp. 3734-3745 (2013).
18. Wu, D., Wang, P., Wu, P., Yang, Q., Liu, F., Han, Y.,
Xu, F., and Wang, L. Determination of contact angle
of droplet on convex and concave spherical surfaces",
Chem. Phys., 457, pp. 63-69 (2015).
19. Kim, J.-H., Kavehpour, H.P., and Rothstein, J.P.
Dynamic contact angle measurements on superhydrophobic
surfaces", Phys. Fluids, 27(3), p. 032107
20. Cheng, K., Naccarato, B., Kim, K.J., and Kumar, A.
Theoretical consideration of contact angle hysteresis
using surface-energy-minimization methods", Int. J.
Heat Mass Trans., 102, pp. 154-161 (2016).
21. Burt, R., Birkett, G., Salanne, M., and Zhao, X.
Molecular dynamics simulations of the in
uence of
drop size and surface potential on the contact angle of
ionic-liquid droplets", J. Phys. Chem. C, 120(28), pp.
15244-15250 (2016).
22. Zhang, C., Liu, Z., and Deng, P. Contact angle of
soil minerals: A molecular dynamics study", Comput.
Geo., 75, pp. 48-56 (2016).
23. Wu, S. and Ma, M. A contact angle hysteresis model
based on the fractal structure of contact line", J.
Colloid Interface Sci., 505, pp. 995-1000 (2017).
24. Skvara, J., Skvor, J., and Nezbeda, I. Evaluation of
the contact angle from molecular simulations", Mol.
Simul., 44(3), pp. 190-199 (2018).
25. Villa, F., Marengo, M., and De Coninck, J. A new
model to predict the in
uence of surface temperature
on contact angle", Sci. Rep., 8, pp. 1-10 (2018).
26. Feng, X., Mo, Y., Zhao, Y., and Jiang, S. Understanding
the temperature and size dependence of the
contact angle of Cu/Si (1 1 1): A molecular dynamics
study", Comput. Mater. Sci., 150, pp. 222-229 (2018).
27. Rosenholm, J.B., Peiponen, K.-E., and Gornov, E.
Materials cohesion and interaction forces", Adv. Colloid
Interface Sci., 141(1-2), pp. 48-65 (2008).
M.J. Javanmardi et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 3183{3196 3195
28. Javanmardi, M. and Jafarpur, K. A molecular dynamics
simulation for thermal conductivity evaluation
of carbon nanotube-water nano
uids", J. Heat Trans.,
135(4), pp. 042401-042401-9 (2013).
29. Wu, R., Liang, S., Pan, A., Yuan, Z., Tang, Y.,
Tan, X., Guan, D., and Yu, Y. Fabrication of
nano-structured super-hydrophobic lm on aluminum
by controllable immersing method", Appl. Surf. Sci.,
258(16), pp. 5933-5937 (2012).
30. Minkowycz, W., Sparrow, E.M., and Murthy, J.Y.,
Handbook of Numerical Heat Transfer, 2nd Edn., John
Wiley & Sons, Inc. (2006).
31. Rapaport, D.C., The Art of Molecular Dynamics Simulation,
2nd Edn., Cambridge University Press (2004).