Design of mixed flow pump impeller blade using mean streamline theory and its analysis

Document Type : Research Note

Authors

Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India.

Abstract

Given the importance of blade design in effective performance of the mixed flow pump, the present work demonstrates the designing of the mixed flow pump impeller blade using almost unexplored Mean stream line theory. The Mean stream line theory, though been used sparingly but has found to give comparable results to that of other templates of design. The design process has been carried out in AUTOCAD 2013 and Solid Works Premium 2014 software. The analysis for equivalent stress, equivalent elastic strain, Total deformation and the directional deformation have been carried out in ANSYS 2014 for different construction material of the blade i.e., stainless steel, titanium alloy, bronze, and copper alloy. Total deformation was found to be maximum for impeller blade made from titanium alloy whereas the equivalent stress and strain was least for titanium alloyed impeller blade. Further, a comparison analysis has been carried out for the equivalent stresses in blade designed using mean stream line theory and free vortex theory. It was observed that the equivalent stress in impeller blade designed using free vortex theory was lesser than that designed using mean stream line theory.

Keywords

Main Subjects


1. Wislicenus, G.F., Fluid Mechanics of Turbomachinery,  McGraw-Hill, New York (1947).  2. Myles, D.J. A design method for mixed ow fans and  pumps", Report No. 117, National Engineering (1965).  3. Stepano_, A.J., Centrifugal and Axial Flow Pumps,  2nd Ed., John Wiley and Sons, New York (1957).  4. Neumann, B., The Interaction Between Geometry  and Performance of a Centrifugal Pump, Mechanical  Engineering Publications, London (1991).  5. Gahlot, V.K. and Nyiri, A., Impeller Pumps. Theory  and Design, M.A.C.T, Bhopal (1993).  6. Varchola, M. and Hlbocan, P. Geometry design of  a mixed ow pump using experimental results of an  internal impeller ow", Procedia Engineering, 39, pp.  168{174 (2012).  7. Zangeneh, M., Goto, A., and Takemura, T. Suppression  of secondary ows in a mixed ow pump impeller  by application of three-dimensional inverse design  method: Part 1 - design and numerical validation",  ASME Trans. J. Turbomach., 118, pp. 536{543 (1996).  8. Xu, J.Z. and Gu, C.W. A numerical procedure of  three-dimensional design problem in turbo machinery",  ASME Trans. J. Turbomach., 114, pp. 548{582  (1992).  9. Borges, J.E. A three-dimensional inverse method for  turbo machinery: Part-1 Theory", ASME Trans. J.  Turbo, 112, pp. 346{354 (1990).  10. Peng, G., Cao, S., Ishizuka, M., and Hayama, S.  Design optimization of axial ow hydraulic turbine  runner: Part I - an improved Q3D inverse method",  International Journal for Numerical Methods in Fluids,  39, pp. 517{531 (2002).  11. Anagnostopoulos, J.S. A fast numerical method for  ow analysis and blade design in centrifugal pump  impellers", Comput Fluids, 38, pp. 284{289 (2009).  12. Li, J., Zeng, Y., Liu, X., and Wang, H. Optimum  design on impeller blade of mixed-ow pump based on  CFD", Procedia Eng., 31, pp. 187{195 (2012).  13. Jafarzadeh, B., Hajari, A., Alishahi, M.M., and Akbari,  M.H. The ow simulation of a low-speci_c-speed  high-speed centrifugal pump", Appl. Math Model, 35,  pp. 242{249 (2011).  14. Chaudhari, S.C., Yadav, C.O., and Damor, A.B. A  comparative study of mix ow pump impeller CFD  analysis and experimental data of submersible pump",  International Journal of Research in Engineering &  Technology (IJRET), 1(3), pp. 57{64 (2013).  15. Desai, S.M. and Naik, B.R. Optimum design on  impeller of mixed ow pump using CFD simulation",  International Journal of Research in Engineering &  Technology, 4(8), pp. 535{537 (2015).  16. Mingxiong, O., Weidong, S., Weidong, J., and Qiang,  F. Numerical simulation and experimental validation  on hydrodynamic radial force of mixed-ow pump  impeller", Trans Chinese Soc. Agric. Eng., 31, pp. 71{  76 (2015).  17. S_akar, G. and Sabuncu, M. Dynamic stability analysis  of pretwisted aerofoil cross-section blade packets under  rotating conditions", Int. J. Mech. Sci., 50, pp. 1{13  (2008).  18. Li, N., Zhou, Q., Chen, X., Xu, T., Hui, S., and  Zhang, D. Liquid drop impact on solid surface with  application to water drop erosion on turbine blades,  Part I: Nonlinear wave model and solution of onedimensional  impact", Int. J. Mech. Sci., 50, pp. 1526{  1542 (2008).  D. Zindani et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 350{360 359  19. Kaneko, S. and Hayashi, I. Pressure pulsations in  piping system excited by a centrifugal turbomachinery  taking the damping characterstics into consideration",  Journal of Fluids and Structures, 45, pp. 216{234  (2014).  20. Kikuyama, K., Hasegawa, H., and Maeda, T. Unsteady  pressure change in centrifugal pump impeller  passages due to inlet swirl", Journal of Fluids and  Structures, 6(3), pp. 337{351 (1992).  21. Shou-qi, P.Y., Jian-ping, Y., and Wen-jie, W. The  inuence of the ow rate on periodic ow unsteadiness  behaviors in a sewage centrifugal pump", Journal of  Hydrodynamics, 25(5), pp. 702{709 (2013).  22. Pei, H., Dohmen, H.J., Yuan, S.Q., and Benra,  F.K. Investigation of unsteady ow-induced impeller  oscillations of a single-blade pump under o_-design  conditions", Journal of Fluids and Structures, 35, pp.  89{104 (2012).  23. Langthjem, M.A. and Olho_, N. A numerical study  of ow-induced noise in a two-dimensional centrifugal  pump. Part I: Hydroacoustics", Journal of Fluids and  Structures, 19(3), pp. 349{368 (2004).  24. Langthjem, M.A. and Olho_, N. A numerical study  of ow-induced noise in a two-dimensional centrifugal  pump, Part II: Hydroacoustics", Journal of Fluids and  Structures, 19(3), pp. 369{386 (2004).  25. Rzentkowski, G. and Zbroja, S. Experimental characterization  of centrifugal pumps as an acoustic source  at the blade-passing frequency", Journal of Fluids and  Structures, 14(4), pp. 529{558 (2000).  26. Ramamurti, V. and Balasubramanian, P. Steady  state stress analysis of centrifugal fan impellers", Computers  & Structures, 25(1), pp. 129{135 (1987).  27. Jonker, J.B. and Essen, V.G.T. A _nite element perturbation  method for computing uid induced forces  on a centrifugal impeller, rotating and whirling in a  volute casing", International Journal for Numerical  Methods in Engineering, 40, pp. 269{294 (1997).  28. Samir, L. and Nermina, Z. Mode shapes of centrifugal  pump impeller", Trends in the Development of Machinery  and Associated Technology, B&H, pp. 18{22  (2002).  29. Bhope, D.V. and Padole, P.M. Experimental and  theoretical analysis of stresses, noise and ow in  centrifugal fan impeller", Mechanism and Machine  Theory, 39(12), pp. 1257{1271 (2004).  30. Arewar, A.P. and Bhope, D.V. Stress analysis of  axial ow fan impeller", International Journal of Engineering  Research and Applications, 3, pp. 2086{2090  (2013).  31. Das, A., Roy. A.K., and Kumar, K. Design and stress  analysis of a mixed ow pump impeller", International  Journal of Mechanical Engineering and Computer Applications,  1(5), pp. 1{7 (2013).  32. Kan, K., Zheng, Y., Fu, S., Liu, H., Yang, C., and  Zhang, X. Dynamic stress of impeller blade of shaft  extension tubular pump device based on bidirectional  uid-structure interaction", Journal of Mechanical Science  and Technology, 31(4), pp. 1561{1568 (2017).  33. Kumar, A., Jain, K.K., Dave, R.K., and Choudhary, A.  CFD analysis of centrifugal pump impeller having different  exit blade width, exit diameter and trailing edge  blade angle to enhance performance", International  Research Journal of Engineering and Technology, 4(5),  pp. 1231{1239 (2017).  34. Kocaaslan, O., Ozgoren, M., Babayigit, O., and Aksoy,  M.H. Numerical investigation of the e_ect of number  of blades on centrifugal pump performance", In AIP  Conference Proceedings, 1863(1), pp. 1{4 (2017).  35. Srivastava, S., Roy, A.K., and Kumar, K. Design of  a mixed ow pump impeller blade and its validation  using stress analysis", Procedia Mater Sci., 6, pp. 417{  424 (2014).  36. Horlock, J.H., Axial Flow Compressor - Fluid Mechanics  and Thermodynamics, Butterworth Scienti_c  Publications, London (1958).  37. Zindani, D., Roy, A.K., and Kumar, K. Design of  impeller blade of mixed ow pump: A comparative  analysis", In Design and Optimization of Engineering  Products, K. Kumar, and J.P. Davim, Eds., pp. 37{66,  IGI Global, USA (2018).  38. Zindani, D., Roy, A.K., and Kumar, K. Comparison  of stresses in blade of a mixed ow pump impeller  designed using mean stream line method and free  vortex method", Materials Today: Proceedings, 4(8),  pp. 9333{9340 (2017).