Prediction of meteorological and hydrological phenomena in different climatic scenarios in the Karkheh watershed (southwest of Iran)

Document Type : Article


Department of Civil Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.


This research evaluates effects of climatic change on future temperature, precipitation and flow discharge in the Karkheh watershed (a watershed in south west of Iran). For this purpose, it utilizes general circulation models (GCMs) and the non parametric Mann-Kendall (MK) trend test. Considered hydrometric station is the Jelogir station at the upstream of the Karkheh dam. Base time period is 1971-2014 and future time period is 2030- 2073 for prediction of meteorological and hydrometric phenomena in the Jelogir station. For GCM model, the Canadian Climate Change Scenarios Network (CCCSN) database represents data of HadCM3 model for A2 and B2 scenarios. For using in a watershed, this research applies SDSM downscaling model and introduces predicted precipitation and temperature of future time period to IHACRES model for prediction of flow discharge. Also the non parametric Mann-Kendall trend test and the Theil–Sen approach (TSA) estimator distinguishes trend of observed and predicted data. Results of scenarios A2 and B2 have not much difference. Different climatic scenarios show that temperature increases and precipitation and flow discharge decrease, also MK test and TSA estimator represent that slope of their variations will slow down in future and most of changes are related to winter and spring.


Main Subjects

1. Mann, H.B. Nonparametric tests against trend", Econometrica, 13(3), pp. 245{259 (1945). 2. Kendall, M.G., Rank Correlation Methods, 4th Ed., Charles Gri_n, London (1975). 3. Theil, H. A rank invariant method for linear and polynomial regression analysis", Nederl. Akad. Wetensch. Proc. Ser. A, 53, 386{392 (Part I), 521{525 (Part II), 1397{1412 (Part III) (1950). 1824 A. Adib et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 1814{1825 4. Sen, P.K. Estimates of the regression coe_cient based on Kendall's tau", J. Am. Stat. Assoc., 63(324), pp. 1379{1389 (1968). 5. Yue, S., Pilon, P., Phinney, B., and Cavadias, G. The inuence of autocorrelation on the ability to detect trend in hydrological series", Hydrol. Process, 16(9), pp. 1807{1829 (2002). 6. Taxak, A.K., Murumkar, A.R., and Arya, D.S. Long term spatial and temporal rainfall trends and homogeneity analysis in Wainganga basin, Central India", Weather Clim. Extremes, 4, pp. 50{61 (2014). 7. Kumar, V. and Jain, S.K. Trends in rainfall amount and number of rainy days in river basins of India (1951{ 2004)", Hydrol. Res., 42(4), pp. 290{306 (2011). 8. Subash, N., Singh, S.S., and Priya, N. Variability of rainfall and e_ective onset and length of the monsoon season over a sub-humid climatic environment", Atmos. Res., 99(3{4), pp. 479{487 (2011). 9. Sayemuzzaman, M. and Jha, M.K. Seasonal and annual precipitation time series trend analysis in North Carolina, United States", Atmos. Res., 137, pp. 183{ 194 (2014). 10. Tekleab, S., Mohamed, Y., and Uhlenbrook, S. Hydro-climatic trends in the Abay/Upper Blue Nile basin, Ethiopia", Phys. Chem. Earth Pts. A/B/C, 61{ 62, pp. 32{42 (2013). 11. Addisu, S., Selassie, Y.G., Fissha, G., and Gedif, B. Time series trend analysis of temperature and rainfall in lake Tana Sub-basin, Ethiopia", Environ. Syst. Res., 4(1), p. 25 (2015). 12. Beyene, A.N. Precipitation and temperature trend analysis in Mekelle city, Northern Ethiopia , the case of Illala meteorological station", J. Earth Sci. Climatic Change, 7(1), p. 324 (2016). 13. Croitoru, A.E., Piticar, A., Dragot_a, C.S., and Burada, D.C. Recent changes in reference evapotranspiration in Romania", Global Planet. Change, 111, pp. 127{136 (2013). 14. De la Casa, A.C. and Nasello, O.B. Low frequency oscillation of rainfall in C_ordoba, Argentina, and its relation with solar cycles and cosmic rays", Atmos. Res., 113, pp. 140{146 (2012). 15. Adib, A., Kalaee, M.M.K., Shoushtari, M.M., and Khalili, K. Using of gene expression programming and climatic data for forecasting ow discharge by considering trend, normality, and stationarity analysis", Arab. J. Geosci., 10(9), Article 208 (2017). 16. Somee, B.S., Ezani, A., and Tabari, H. Spatiotemporal trends and change point of precipitation in Iran", Atmos. Res., 113, pp. 1{12 (2012). 17. Tabari, H., Somee, B.S., and Zadeh, M.R. Testing for long-term trends in climatic variables in Iran", Atmos. Res., 100(1), pp. 132{140 (2011). 18. Abghari, H., Tabari, H., and Talaee, P.H. River ow trends in the west of Iran during the past 40 years: impact of precipitation variability", Global Planet. Change, 101, pp. 52{60 (2013). 19. Khalili, K., Tahoudi, M.N., Mirabbasi, R., and Ahmadi, F. Investigation of spatial and temporal variability of precipitation in Iran over the last half century", Stoch. Env. Res. Risk A., 30(4), pp. 1205{ 1221 (2016). 20. Zamani, R., Mirabbasi, R., Abdollahi, S., and Jhajharia, D. Streamow trend analysis by considering autocorrelation structure, long term persistence, and Hurst coe_cient in a semi-arid region of Iran", Theor. Appl. Climatol., 129(1{2), pp. 33{45 (2017). 21. Ay, M. and Ki_si,  O. Investigation of trend analysis of monthly total precipitation by an innovative method", Theor. Appl. Climatol., 120(3{4), pp. 617{629 (2015). 22. Xu, K., Milliman, J.D., and Xu, H. Temporal trend of precipitation and runo_ in major Chinese rivers since 1951", Global Planet. Change, 73(3{4), pp. 219{232 (2010). 23. Caloiero, T. Trend of monthly temperature and daily extreme temperature during 1951{2012 in New Zealand", Theor. Appl. Climatol., 129(1{2), pp. 111{ 127 (2017). 24. Wang, H. and Lau, K.M. Atmospheric hydrological cycle in the tropics in twentieth century coupled climate simulations", Int. J. Climatol., 26(5), pp. 655{ 678 (2006). 25. DeGaetano, A.T. and Castellano, C.M. Future projections of extreme precipitation intensity-durationfrequency curves for climate adaptation planning in New York State", Climate Serv., 5, pp. 23{35 (2017). 26. Hashmi, M.Z., Shamseldin, A.Y., and Melville, B.W. Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed", Stoch. Env. Res. Risk A., 25(4), pp. 475{ 484 (2011). 27. Gulacha, M.M. and Mulungu, D.M.M. Generation of climate change scenarios for precipitation and temperature at local scales using SDSM in Wami-Ruvu River Basin Tanzania", Phys. Chem. Earth Pts. A/B/C, 100, pp. 62{72 (2017). 28. Lima, C.H.R., Kwon, H.H., and Kim, J.Y. A Bayesian beta distribution model for estimating rainfall IDF curves in a changing climate", J. Hydrol., 540, pp. 744{756 (2016). 29. Agilan, V. and Umamahesh, N.V. Is the covariate based non-stationary rainfall IDF curve capable of encompassing future rainfall changes?", J. Hydrol., 541(Part B), pp. 1441{1455 (2016). 30. Mailhot, A., Duchesne, S., Caya, D., and Talbot, G. Assessment of future change in intensity-durationfrequency (IDF) curves for Southern Quebec using the Canadian Regional Climate Model (CRCM)", J. Hydrol., 347(1{2), pp. 197{210 (2007). 31. Alam, M.S. and Elshorbagy, A. Quanti_cation of the climate change-induced variations in intensityduration- frequency curves in the Canadian Prairies", J. Hydrol., 527, pp. 990{1005 (2015). A. Adib et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 1814{1825 1825 32. Simonovic, S.P., Schardong, A., Sandink, D., and Srivastav, R. A web-based tool for the development of intensity duration frequency curves under changing climate", Environ. Modell. Softw., 81, pp. 136{153 (2016). 33. Khan, M.S., Coulibaly, P., and Dibike, Y. Uncertainty analysis of statistical downscaling methods", J. Hydrol., 319(1{4), pp. 357{382 (2006). 34. Kuo, C.C., Gan, T.Y., and Hanrahan, J.L. Precipitation frequency analysis based on regional climate simulations in Central Alberta", J. Hydrol., 510, pp. 436{446 (2014). 35. Pour, S.H., Shahid, S., Chung, E.S., and Wang, X.J. Model output statistics downscaling using support vector machine for the projection of spatial and temporal changes in rainfall of Bangladesh", Atmos. Res., 213, pp. 149{162 (2018). 36. Sehgal, V., Lakhanpal, A., Maheswaran, R., Khosa, R., and Sridhar, V. Application of multi-scale wavelet entropy and multi-resolution Volterra models for climatic downscaling", J. Hydrol., 556, pp. 1078{1095 (2018). 37. Hertig, E. and Tramblay, Y. Regional downscaling of Mediterranean droughts under past and future climatic conditions", Global Planet. Change, 151, pp. 36{48 (2017). 38. Osman, Y.Z. and Abdellatif, M.E. Improving accuracy of downscaling rainfall by combining predictions of di_erent statistical downscale models", Water Sci., 30(2), pp. 61{75 (2016). 39. Sinha, P., Mann, M.E., Fuentes, J.D., Mejia, A., Ning, L., Sun, W., He, T., and Obeysekera, J. Downscaled rainfall projections in south Florida using self-organizing maps", Sci. Total Environ., 635, pp. 1110{1123 (2018). 40. Sachindra, D.A., Ahmed, K., Rashid, M.M., Shahid, S., and Perera, B.J.C. Statistical downscaling of precipitation using machine learning techniques", Atmos. Res., 212, pp. 240{258 (2018). 41. Sa'adi, Z., Shahid, S., Chung, E.S., and Ismail. T.B. Projection of spatial and temporal changes of rainfall in Sarawak of Borneo Island using statistical downscaling of CMIP5 models", Atmos. Res., 197, pp. 446{460 (2017). 42. Pour, S.H., Shahid, S., and Chung, E.S. A hybrid model for statistical downscaling of daily rainfall", Procedia Eng., 154, pp. 1424{1430 (2016). 43. Adib, A. and Gafari Rad, S. Development of a new integrated method for generation IDF curves based on three climatic changes scenarios", Sci. Iran., 26(2), pp. 742{751 (2019). 44. Sahraei, S., Zare Andalani, S., Zakermoshfegh, M., Nikeghbal Sisakht, B., Talebbeydokhti, N., and Moradkhani, H. Daily discharge forecasting using least square support vector regression and regression tree", Sci. Iran., 22(2), pp. 410{422 (2015). 45. Chitsaz, N. and Hosseini-Moghari, S.M. Introduction of new datasets of drought indices based on multivariate methods in semi-arid regions", Hydrol. Res., 49(1), pp. 266{280 (2018). 46. Gordon, C., Cooper, C., Senior, C.A., Banks, H., Gregory, J.M., Johns, T.C., Mitchell, J.F.B., and Wood, R.A. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without ux adjustments", Clim. Dynam., 16(2{3), pp. 147{168 (2000). 47. Pope, V.D., Gallani, M.L., Rowntree, P.R., and Stratton, R.A. The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3", Clim. Dynam., 16(2{3), pp. 123{146 (2000). 48. Collins, M., Tett, S.F.B., and Cooper, C. The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without ux adjustments", Clim. Dynam., 17(1), pp. 61{81 (2001). 49. Summary for policymakers-emissions scenarios", A special report of working group III of the intergovernmental panel on climate change, World Meteorological Organization (WMO) (2000). 50. Jakeman, A.J., Littlewood, I.G., and Whitehead, P.G. Computation of the instantaneous unit hydrograph and identi_able component ows with application to two small upland catchments", J. Hydrol., 117(1{4), pp. 275{300 (1990). 51. Pettitt, A.N. A non-parametric approach to the change-point problem", J. Roy. Stat. Soc. C-App., 28(2), pp. 126{135 (1979).