The deformation mechanism of a high rockfill dam during the construction and first impounding

Document Type : Article

Authors

Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, P.O. Box 91775-1111, Iran.

Abstract

The Masjed-e-Soleyman dam is a high rockfill dam with clay core, located in Iran. During construction and first impounding, a considerably high excess pore water pressure has been developed inside the core and has been being dissipated with a very slow rate, so the consolidation deformations have been insignificant. However, there have been reports of noticeable internal deformations in the dam, the crest has also exhibited quick settlements during the first impounding. The main objective of this paper was to identify the deformation mechanism of this dam. For this purpose, the data recorded by its instruments were carefully studied and then a three-dimensional numerical model of the dam was developed. The mechanical behavior of materials was idealized by a hardening strain constitutive model. A numerical method was proposed, based on this constitutive model and Rowe’s stress–dilatancy theory, to simulate the deformation behavior of coarse-grained materials, like rockfills, due to particle size distribution, particle breakage, rotation, and rearrangement under shearing. The results show that significant development of pore pressure in the core and its insignificant dissipation, plastic shear deformations inside the core and extensive collapse settlements of the upstream shell are the main causes influencing the deformation mechanism.

Keywords

Main Subjects


1. Cetin, H., Laman, M., and Ertun_c, A. Settlement and  slaking problems in the world's fourth largest rock-  _ll dam, the Ataturk Dam in Turkey", Engineering  Geology, 56, pp. 225{242 (2000).  2. Xing, H.F., Gong, X.N., Zhou, X.G., and Fu, H.F.  Construction of concrete-faced rock_ll dams with  weak rocks", J. Geotech. Geoenviron. Eng., 132(6),  pp. 778{785 (2006).  3. Costa, L.M. and Alonso, E.E. Predicting the behavior  of an earth and rock_ll dam under construction",  Journal of Geotechnical and Geoenvironmental Engineering,  ASCE, 135(7), pp. 851-862 (2009).  4. Akhtarpour, A. and Khodaii, A. A study of the  seismic response of asphaltic concrete used as a core in  rock_ll dams", Journal of Seismology and Earthquake  Engineering, 16, pp. 169{184 (2014).  5. Wang, Z., Liu, S., Vallejo, L., and Wang, L. Numerical  analysis of the causes of face slab cracks in  Gongboxia rock_ll dam", Engineering Geology, 181,  pp. 224{232 (2014).  6. Kim, Y.S., Seo, M.W., Lee, C.W., and Kang, G.C.  Deformation characteristics during construction and  after impoundment of the CFRD-type Daegok Dam,  Korea", Engineering Geology, 178, pp. 1{14 (2014).  7. Mahinroosta, R., Aliadeh, A., and Gatmiri, B. Simulation  of collapse settlement of _rst _lling in a high  rock_ll dam", Engineering Geology, 187, pp. 32{44  (2015).  A. Akhtarpour and M. Salari/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 566{587 585  8. Marsal, R.J. Large scale testing of rock _ll materials",  J. Soil Mech. Found. Div. ASCE, 93(2), pp. 27{43  (1967).  9. Marschi, N.D., Chan, C.K., and Seed, H.B. Evaluation  of properties of rock_ll materials", J. Soil Mech.  Found. Div., ASCE, 98(1), pp. 95{114 (1972).  10. Indraratna, B., Wijewardena, L.S.S., and Balasubramaniam,  A.S. Large-scale triaxial testing of  greywacke rock_ll", Geotechnique, 43(1), pp. 37{51  (1993).  11. Varadarajan, A., Sharma, K.G., Venkatachalam, K.,  and Gupta, A.K. Testing and modeling two rock_ll  materials", J. Geotech. Geoenviron. Eng., 129(3), pp.  206{206 (2003).  12. Vasistha, Y., Gupta, A.K., and Kanwar, V. Medium  triaxial testing of some rock_ll materials", Electron. J.  Geotech. Eng., 18(Bund. D), pp. 923{964 (2013).  13. Xiao, Y., Liu, H., Chen, Y., and Jiang, J. Strength  and deformation of rock_ll material based on largescale  triaxial compression tests. I: inuences of density  and pressure", Journal of Geotechnical and Geoenvironmental  Engineering, 140(12), Article ID 04014070  (2014).  14. Xiao, Y., Liu, H., Chen, Y., and Jiang, J. Strength  and deformation of rock_ll material based on largescale  triaxial compression tests. II: inuence of particle  breakage", Journal of Geotechnical and Geoenvironmental  Engineering, 140(12), Article ID 04014071  (2014).  15. Khoiri, M., Ou, C.Y., and Teng, F.C. A comprehensive  evaluation of strength and modulus parameters of  a gravelly cobble deposit for deep excavation analysis",  Engineering Geology, 174, pp. 61{72 (2014).  16. Duncan, J.M. and Chang, C.Y. Nonlinear analysis of  stress and strain in soils", J. Soil Mech. Found. Div.,  ASCE, 96(5), pp. 1629{53 (1970).  17. Lade, P.V. and Kim, M.K. Single hardening constitutive  model for soil, rock and concrete", Inter. J. Solids  and Structures, 32(14), pp. 1963{1978 (1995).  18. Nova, R. and Wood, D.M. A constitutive model for  sand in triaxial compression", Inter. J. for Numerical  and Analytical Methods in Geomechanics, 3(3), pp.  255{278 (1979).  19. Lade, P.V. and Duncan, J.M. Elastoplastic stressstrain  theory for cohesionless soil", J. Geotech. Engin.  Div., ASCE, 101(GT10), pp. 1037{1053 (1975).  20. Guo, R. and Li, G. Elasto-plastic constitutive model  for geotechnical materials with strain-softening behavior",  Comput. Geotech., 34, pp. 14{23 (2008).  21. Kulhawy, F.H. and Duncan, J.M. Stresses and movements  in Oroville dam", J. Soil Mech. Found. Div.,  ASCE, 98(7), pp. 653{665 (1972).  22. Escuder, I., Andreu, J., and Reche, M. An analysis of  stress-strain behaviour and wetting e_ects on quarried  rock shells", Can. Geotech. J., 42(1), pp. 51{60 (2005).  23. Varadarajan, A., Sharma, K.G., Abbas, S.M., and  Dhawan, A.K. Constitutive model for rock_ll materials  and determination", Int. J. Geomech., 6(4), pp.  226{237 (2006).  24. Veiskarami, M., Ghorbani, A., and Alavipour, M.R.  Development of a constitutive model for rock_lls and  similar granular materials based on the disturbed state  concept", Front. Struct. Civ. Eng., 6(4), pp. 365{378  (2012).  25. Xu, M. and Song, E. Numerical simulation of the  shear behavior of rock_lls", Comput. Geotech., 36(8),  pp. 1259{1264 (2009).  26. Xiao, Y., Liu, H., Chen, Y., and Jiang, J. Testing  and modeling of the state-dependent behaviors of  rock_ll material", Comput. Geotech., 6(1), pp. 153{  165 (2014c).  27. Feda, J. Note on the e_ect of grain-crashing on the  granular soil behavior", Engineering Geology, 63, pp.  93{98 (2002).  28. Miura, S., Yagi, K., and Asonuma, T. Deformationstrength  evaluation of crushable volcanic soils by laboratory  and in-situ testing", Soils Found., 43(4), pp.  47{57 (2003).  29. Einav, I. Breakage mechanics-Part I: Theory", J.  Mech. Phys. Solids, 55(6), pp. 1274{1297 (2007a).  30. Einav, I. Soil mechanics: Breaking ground", Philos.  Trans. R. Soc. London, Ser. A, 365(1861), pp. 2985{  3002 (2007).  31. Bandini, V. and Coop, M.R. The inuence of particle  breakage on the location of the critical state line of  sands", Soils Found., 51(4), pp. 591{600 (2011).  32. Salim, W. and Indraratna, B. A new elastoplastic  constitutive model for coarse granular aggregates  incorporating particle breakage", Can. Geotech. J.,  41(4), pp. 657{671(2004).  33. Barden, L., McGown, A., and Collins, K. The collapse  mechanism in partly saturated soil", Engineering  Geology, 7(1), pp. 49{60 (1973)  34. Marsal, R.J., Mechanical Properties of Rock Fill, In:  R.C. Hirshfeld and S.J. Poulos, Eds., Embankment-  Dam Engineering, Casagrande Volume, John Wiley &  Sons Inc., N.Y., pp. 109{200 (1973).  35. Maswoswe, J. Stress paths for a compacted soil  during collapse due to wetting", PhD Thesis, Imperial  College, University of London (1985).  36. Egretli, I. and Singh, R.N. A laboratory investigation  into the e_ects of air void and water saturation on the  collapse settlement of opencast mine back_ll", Min.  Sci. Technol., 7, pp. 87{97 (1988).  37. Nouaouria, M.S., Guenfoud, M., and La__, B. Engineering  properties of loess in Algeria", Engineering  Geology, 99(2), pp. 85{89 (2008).  38. Mahinroosta, R. and Oshtaghi, V. E_ect of saturation  on the shear strength and collapse settlement of  gravelly material using direct shear test apparatus",  Sharif J. Sci. Technol., 29(1), pp. 103{114 (2013).  586 A. Akhtarpour and M. Salari/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 566{587  39. Squier, L.R. Load transfer in earth and rock_ll dams",  J. Soil Mech. Found. Div., ASCE, 96(SM1), pp. 213{  233 (1970).  40. Hunter, G.J. The pre- and post-failure deformation  behaviour of soil slopes", PhD Thesis, University of  New South Wales, Australia (2003).  41. Nobari, E.S. and Duncan, J.M. E_ect of reservoir  _lling on stresses and movements in earth and rock-  _ll dams", Report TE-72-1, University of California,  Department of Civil Engineering (1972).  42. Naylor, D.J., Maranha das Neves, E., Mattar, J.D.,  and Veiga Pinto, A.A. Prediction of construction  performance of Beliche Dam", Geotechnique, 36(3),  pp. 359{376 (1986).  43. Naylor, D.J., Maranha, J.R., Maranha das Neves, E.,  and Veiga Pinto, A.A. A back-analysis of Beliche  Dam", Geotechnique, 47(2), pp. 221{233 (1997).  44. Maranha das Neves, E. and Veiga Pinto, A. Modeling  collapse on rock_ll dams", Comput. Geotech, 6, pp.  131{153 (1988).  45. Alonso, E.E., Olivella, S., and Pinyol, N.M. A review  of Beliche Dam", Geotechnique, 55(4), pp. 267{285  (2005).  46. Lloret, A. and Alonso, E.E. Consolidation of unsaturated  soils including swelling and collapse behavior",  Geotechnique, 30(4), pp. 449{477 (1980).  47. Oldecop, L.A. and Alonso, E.E. A model for rock_ll  compressibility", Geotechnique, 51(2), pp. 127{139  (2001).  48. Oldecop, L.A. and Alonso, E.E. Suction e_ects on  rock_ll compressibility", Geotechnique, 53(2), pp. 289{  292 (2003).  49. Mahinroosta, R. and Alizadeh, A. Simulation of collapse  settlement in rock_ll material due to saturation",  Inter. J. Civ. Engin., 10(2), pp. 102{108 (2012).  50. Itasca Consulting Group, Inc. FLAC3D, User's Manuals,  Minneapolis, Minnesota (2012).  51. Moshanir Power Engineering Consultants, Review on  Additional Laboratory Tests on Materials of Masjed-e-  Soleyman Dam, Tehran, Iran (1996).  52. Araei, A.A., Soroush, A., and Rayhani, M. Largescale  triaxial testingand numerical modeling of  rounded and angular rock_ll materials", Scientia Iranica,  17(3), pp. 169{183 (2010).  53. Soroush, A. and Jannatiaghdam, R. Behavior of rock-  _ll materials in triaxial compression testing", Inter. J.  Civ. Engin, 10(2), pp. 153{161 (2012).  54. Vermeer, P.A. and De Borst, R. Non-associated  plasticity for soils, concrete and rock", Heron., 29(3),  pp. 1{64 (1984).  55. Rowe, P.W. Stress-dilatancy, earth pressure and  slopes", J. Soil Mech. Found. Div., ASCE, 89(5), pp.  37{61(1963).  56. Karlsruhe University, Masjed-e-Soleyman Dam HPP:  Investigations on Coarse-grain Materials, Institute of  Soil and Rock Mechanics, Karlsruhe University, Germany  (1996).  57. Ramamurthy, T. and Gupta, K.K. Response paper  to how ought one to determine soil parameters to be  used in the design of earth and rock_ll dams", In  Proceedings of Indian Geotechnical Conference, New  Delhi, India, 2, pp. 15{19 (1986).  58. Naderian, A.R. and Williams, D.J. Bearing capacity  of open coal-mine back_ll materials", Trans. Inst. Min.  Metal, 106, pp. A30{A34 (1997).  59. Nahazanan, H., Clarke, S., Asadi, A., Yuso_, Z.M.,  and Huat, B.K. E_ect of inundation on shear strength  characteristics of mudstone back_ll", Engineering Geology,  158, pp. 48{56 (2013).  60. Hasanzadehshooiili, H., Mahinroosta, R., Lakirouhani,  A., and Oshtaghi, V. Using arti_cial neural network  (ANN) in prediction of collapse settlements of sandy  gravels", Arab. J. Geosci., 7(6), pp. 2303{2314 (2014).  61. Pagano, L., Sica, S., and Desideri, A. Representativeness  of measurements in the interpretation of earth  dam behavior", Canadian Geotechnical Journal, 43(1),  pp. 87{99 (2006).