Refrences:
1.Zhang, Q. and Hisada, T. Analysis of uid-structure interaction problems with structural buckling and large domain changes by ALE _nite element method", Comput. Methods Appl. Mech. Eng., 190, pp. 6341- 6357 (2001).
2. Bungartz, H.J. and Schafer, M.Ed., Fluid-Structure- Interaction: Modelling, Simulation, Optimization, Springer Science & Business Media, 53 (2006).
3. Tezduyar, T.E., Sathe, S., Schwaab, M., and Conklin, B.S. Arterial uid mechanics modeling with the stabilized space{time uid{structure interaction technique", Int. J. Numer. Methods Fluids, 57(5) pp. 601-629 (2008).
4. Gebreslassie, M.G., Tabor, G.R., and Belmont, M.R. Numerical simulation of a new type of cross ow tidal turbine using OpenFOAM - Part II: Investigation of turbine-to-turbine interaction", Renew. Energy, 50, pp. 1005-1013 (2013). 5. Zhong, J. and Xu, Z. A reduced mesh movement method based on pseudo elastic solid for uid-structure interaction", Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 232(6), pp. 973-986 (2018). 6. Costarelli, S.D., Garelli, L., Cruchaga, M.A., Storti, M.A., Ausensi, R., and Idelsohn, S.R. An embedded strategy for the analysis of uid structure interaction problems", Comput. Methods Appl. Mech. Eng., 300, pp. 106-128 (2016). 7. Farhat, C. and Lakshminarayan, V.K. An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent uid-structure interaction problems", J. Comput. Phys., 263, pp. 53-70 (2014). 8. Tezduyar, T.E., Sathe, S., Cragin, T., Nanna, B., Conklin, B.S., Pausewang, J., and Schwaab, M. Modelling of uid-structure interactions with the spacetime _nite elements: Arterial uid mechanics", Int. J. Numer. Methods Fluids, 54, pp. 901-922 (2007). 9. Tezduyar, T.E. and Sathe, S. Modelling of uidstructure interactions with the space-time _nite elements: Solution techniques", Int. J. Numer. Methods Fluids, 54, pp. 855-900 (2007). 10. Anahid, M. and Khoei, A. Modeling of moving boundaries in large plasticity deformations via an enriched arbitrary Lagrangian-Eulerian FE method", Sci. Iran. Trans. A., J. Civ. Eng., 17, pp. 141-160 (2010). 11. Chessa, J., Smolinski, P., and Belytschko, T. The extended _nite element method (XFEM) for solidi_- cation problems", Int. J. Numer. Methods Eng., 53, pp. 1959-1977 (2002). 12. Baaijens, F.P.T. A _ctitious domain mortar element method for uid-structure interaction", Int. J. Numer. Methods Fluids, 35, pp. 743-761 (2001). 13. Mittal, R. and Iaccarino, G. Immersed boundary methods", Annu. Rev. Fluid Mech., 37, pp. 239-261 (2005). 14. Kim, J., Kim, D., and Choi, H. An immersedboundary _nite-volume method for simulations of ow in complex geometries", J. Comput. Phys., 171, pp. 132-150 (2001). 15. Zhang, L., Gerstenberger, A., Wang, X., and Liu, W.K. Immersed _nite element method", Comput. Methods Appl., Mech. Eng., 193, pp. 2051-2067 (2004). 16. Peskin, C.S. Flow patterns around heart valves: A numerical method", J. Comput. Phys., 10, pp. 252- 271 (1972). 17. Zhu, L. and Peskin, C.S. Simulation of a apping exible _lament in a owing soap _lm by the immersed boundary method", J. Comput. Phys., 179, pp. 452- 468 (2002). 18. Zhu, L. and Peskin, C.S. Drag of a exible _ber in a 2D moving viscous uid", Comput. Fluids, 36, pp. 398-406 (2007). 19. Vanella, M., Posa, A., and Balaras, E. Adaptive mesh re_nement for immersed boundary methods", J. Fluids Eng., 136, p. 40901 (2014). 20. Kajishima, T., Takiguchi, S., Hamasaki, H., and Miyake, Y. Turbulence structure of particle-laden ow in a vertical plane channel due to vortex shedding", JSME Int. J. Ser. B., 44, pp. 526-535 (2001). 21. Wall, W., Gerstenberger, A., and Mayer, U. Advances in _xed-grid uid structure interaction", In: ECCOMAS Multidisciplinary Jubilee Symposium, Springer, pp. 235-249 (2009). 22. Vanella, M., Rabenold, P., and Balaras, E. A directforcing embedded-boundary method with adaptive mesh re_nement for uid-structure interaction problems", J. Comput. Phys., 229, pp. 6427-6449 (2010). 23. Li, S. and Hyman, J.M. Adaptive mesh re_nement for _nite di_erence WENO schemes", Los Alamos Rep, LA-UR- 03-8927 (2003). M.S. Aldlemy et al./Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 2827{2838 2837 24. Berger, M.J. and Leveque, R.J. Adaptive mesh re- _nement using wave-propagation algorithms for hyperbolic systems", SIAM J. Numer. Anal., 35, pp. 2298- 2316 (1998). 25. Li, S. Comparison of re_nement criteria for structured adaptive mesh re_nement", J. Comput. Appl. Math., 233, pp. 3139-3147 (2010). 26. Berger, M.J. and Colella, P. Local adaptive mesh re_nement for shock hydrodynamics", J. Comput. Phys., 82, pp. 64-84 (1989). 27. Berger, M.J. and Oliger, J. Adaptive mesh re_nement for hyperbolic partial di_erential equations", J. Comput. Phys., 53, pp. 484-512 (1984). 28. Lo_er, F., Cao, Z., Brandt, S.R., and Du, Z. A new parallelization scheme for adaptive mesh re_nement", J. Comput. Sci., 16, pp. 79-88 (2016). 29. Brehm, C., Hader, C., and Fasel, H.F. A locally stabilized immersed boundary method for the compressible Navier-Stokes equations", J. Comput. Phys., 295, pp. 475-504 (2015). 30. Ji, H., Lien, F.S., and Zhang, F. A GPU-accelerated adaptive mesh re_nement for immersed boundary methods", Comput. Fluids, 118, pp. 131-147 (2015). 31. Yuki, Y., Takeuchi, S., and Kajishima, T. E_cient immersed boundary method for strong interaction problem of arbitrary shape object with the self-induced ow", J. Fluid Sci. Technol., 2, pp. 1-11 (2007). 32. Ya, T., Shah, T.M.Y., Takeuchi, S., and Kajishima, T. Immersed boundary and _nite element methods approach for interaction of an elastic body and uid by two-stage correction of velocity and pressure", In ASME/JSME 2007 5th Joint Fluids Engineering Conference, pp. 75-81 (2009). 33. Baeza, A., Mart__nez-Gavara, A., and Mulet, P. Adaptation based on interpolation errors for high order mesh re_nement methods applied to conservation laws", Appl. Numer. Math., 62, pp. 278-296 (2012). 34. Zheng, X., Lowengrub, J., Anderson, A., and Cristini, V. Adaptive unstructured volume remeshing -II: Application to two- and three-dimensional level-set simulations of multiphase ow", J. Comput. Phys., 208, pp. 626-650 (2005). 35. Vanella, M. and Balaras, E. A moving-least-squares reconstruction for embedded-boundary formulations", J. Comput. Phys., 228, pp. 6617-6628 (2009). 36. Kempe, T. and Frohlich, J. An improved immersed boundary method with direct forcing for the simulation of particle laden ows", J. Comput. Phys., 231, pp. 3663-3684 (2012). 37. Schafer, M., Turek, S., Durst, F., Krause, E., and Rannacher, R. Benchmark computations of laminar ow around a cylinder", In Flow Simulation with High- Performance Computers II, pp. 547-566 (1996). 38. Codina, R., Houzeaux, G., Coppola-Owen, H., and Baiges, J. The _xed-mesh ALE approach for the numerical approximation of ows in moving domains", J. Comput. Phys., 228, pp. 1591-1611 (2009). 39. Verkaik, A.C., Hulsen, M.A., Bogaerds, A.C.B., and van de Vosse, F.N. An overlapping domain technique coupling spectral and _nite elements for uid ow", Comput. Fluids., 100, pp. 336-346 (2014). 40. Chen, X. and Yang, V. Thickness-based adaptive mesh re_nement methods for multi-phase ow simulations with thin regions", J. Comput. Phys., 269, pp. 22-39 (2014).