A joint determination of production cycle length, maintenance policy, and control chart parameters considering time value of money under stochastic shift size

Document Type : Article

Authors

Department of Industrial Engineering, Faculty of Engineering and Technology, University of Qom, Qom, Iran.

Abstract

Statistical process monitoring, maintenance policy, and production cycle length usually have been investigated separately while they are three dependent aspects in the industrial systems. Moreover, most of the papers that integrated simultaneously these aspects, suffer from three major drawbacks as follows: (1) Optimizing the production cost without considering the time value of money to simplify the model; (2) Considering the fixed shift size while it is a random variable in the real condition; (3) Economic design of control charts ignoring the statistical properties that lead to reduce the control chart power, extremely. To eliminate these weaknesses, this paper presents an integrated model of production cycle length, maintenance policy, and economic-statistical design considering the time value of money and the stochastic shift size. Furthermore, to maintain the reliability of the system at an acceptable level, the presented model uses non-uniform sampling. Finally, three comparative studies on the main contributions are presented to illustrate the advantages of the model and a sensitivity analysis is implemented on the several parameters to extend insights into the matter.

Keywords

Main Subjects


1. Ben-Daya, M. The economic production lot-sizing  problem with imperfect production processes and imperfect  maintenance", International Journal of Production  Economics, 76, pp. 257{264 (2002).  2. Ben-Daya, M. Integrated production maintenance  and quality model for imperfect processes", IIE Transactions,  31, pp. 491{501 (1999).  3. Cheng, L., Tsou, C.S., and Yang, D.Y. Cost-service  tradeo_ analysis of reorder-point-lot-size inventory  models", Journal of Manufacturing Systems, 37, pp.  217{226 (2015).  4. Zhou, X., Wu, C., Li, Y., and Xi, L. A preventive  maintenance model for leased equipment subject to  internal degradation and external shock damage",  Reliability Engineering & System Safety, 154, pp. 1{7  (2016).  5. Costa, A.F. and Rahim, M.A. Economic design of and  R charts under Weibull shock models", Communications  in Statistics-Theory and Methods, 42, pp. 3902{  3925 (2013).  6. Gan, S., Zhang, Z., Zhou, Y., and Shi, J. Joint optimization  of maintenance, bu_er, and spare parts for a  production system", Applied Mathematical Modelling,  39, pp. 6032{6042 (2015).  7. Wen, D., Ershun, P., Ying, W., and Wenzhu, L. An  economic production quantity model for a deteriorating  system integrated with predictive maintenance  strategy", Journal of Intelligent Manufacturing, 27,  pp. 1323{1333 (2016).  8. Rahim, M.A. and Ben-Daya, M. Joint determination  of production quantity, inspection schedule, and quality  control for an imperfect process with deteriorating  products", Journal of the Operational Research Society,  52, pp. 1370{1378 (2001).  9. Cheng, J.C. and Chou, C.Y. A real-time inventory  decision system using Western Electric run rules and  ARMA control chart", Expert Systems with Applications,  35, pp. 755{761 (2008).  10. Xiang, Y. Joint optimization of control chart and preventive  maintenance policies: a discrete-time Markov  chain approach", European Journal of Operational  Research, 229, pp. 382{390 (2013).  11. Wu, J. and Makis, V. Economic and economicstatistical  design of a chi-square chart for CBM",  European Journal of Operational Research, 188, pp.  516{529 (2008).  12. Makis, V. and Fung, J. An EMQ model with inspections  and random machine failures", Journal of the  Operational Research Society, 49, pp. 66{76 (1998).  13. Jiang, Y., Chen, M., and Zhou, D. Joint optimization  of preventive maintenance and inventory policies for  multi-unit systems subject to deteriorating spare part  inventory", Journal of Manufacturing Systems, 35, pp.  191{205 (2015).  14. Salmasnia, A., Kaveie, M., and Namdar, M. An integrated  production and maintenance planning model  under VP-T2 Hotelling chart", Computers & Industrial  Engineering, 118, pp. 89{103 (2018).  15. Bouslah, B., Gharbi, A., and Pellerin, R. Integrated  production, sampling quality control and maintenance  of deteriorating production systems with AOQL constraint",  Omega, 61, pp. 110{126 (2016).  16. Lin, Y.H., Chen, Y.C., and Wang, W.Y. Optimal  production model for imperfect process with imperfect  maintenance, minimal repair and rework", International  Journal of Systems Science: Operations &  Logistics, 4, pp. 229{240 (2017).  17. Beheshti Fakher, H., Nourelfath, M., and Gendreau,  M. A cost minimization model for joint production  and maintenance planning under quality constraints",  International Journal of Production Research, 55, pp.  2163{2176 (2017).  18. Ben-Daya, M. and Makhdoum, M. Integrated production  and quality model under various preventive maintenance  policies", Journal of the Operational Research  Society, 49, pp. 840{853 (1998).  19. Nourelfath, M., Nahas, N., and Ben-Daya, M. Integrated  preventive maintenance and production decisions  for imperfect processes", Reliability Engineering  and System Safety, 148, pp. 21{31 (2016).  20. Luciano, E. and Peccati, L. Capital structure and  inventory management: The temporary sale price  problem", International Journal of Production Economics,  59, pp. 169{178 (1999).  446 A. Salmasnia et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 427{447  21. Van der Laan, E. An NPV and AC analysis of a  stochastic inventory system with joint manufacturing  and remanufacturing", International Journal of Production  Economics, 81, pp. 317{331 (2003).  22. Disney, S.M., Warburton, R.D., and Zhong, Q.C.  Net present value analysis of the economic production  quantity", IMA Journal of Management Mathematics,  24(4), pp. 423{435 (2013).  23. Lin, R., Lin, J.S.J., Chen, K., and Julian, P.C. Note  on inventory model with net present value", Journal of  Interdisciplinary Mathematics, 10, pp. 587{592 (2007).  24. Beullens, P. and Janssens, G.K. Adapting inventory  models for handling various payment structures using  net present value equivalence analysis", International  Journal of Production Economics, 157, pp. 190{200  (2014).  25. Duncan, A.J. The economic design of X charts used  to maintain current control of a process", Journal of  the American Statistical Association, 51, pp. 228{242  (1956).  26. Saniga, E.M. Economic statistical control-chart designs  with an application to X and R charts", Technometrics,  31, pp. 313{320 (1989).  27. Nenes, G., Tasias, K.A., and Celano, G. A general  model for the economic-statistical design of adaptive  control charts for processes subject to multiple  assignable causes", International Journal of Production  Research, 53, pp. 2146{2164 (2015).  28. Yin, H., Zhang, G., Zhu, H., Deng, Y., and He, F.  An integrated model of statistical process control  and maintenance based on the delayed monitoring",  Reliability Engineering and System Safety, 133, pp.  323{333 (2015).  29. Pan, E., Jin, Y., Wang, Sh., and Cang, T. An  integrated EPQ model based on a control chart for an  imperfect production process", International Journal  of Production Research, 50, pp. 6999{7011 (2012).  30. Salmasnia, A., Abdzadeh, B., and Namdar, M. A  joint design of production run length, maintenance  policy and control chart with multiple assignable  causes", Journal of Manufacturing Systems, 42, pp.  44{56 (2017).  31. Wu, Z., Shamsuzzaman, M., and Wang, Q. The  cost minimization and manpower deployment to SPC  in a multistage manufacturing system", International  Journal of Production Economics, 106, pp. 275{287  (2007).  32. Celano, G., De Magalh~aes, M.S., Costa, A.F., and  Fichera, S. A stochastic shift model for economically  designed charts constrained by the process stage  con_guration", International Journal of Production  Economics, 132, pp. 315{325 (2011).  33. El-Kassar, A.N., Salameh, M., and Bitar, M. E_ects  of time value of money on the EPQ model with the  imperfect quality items of raw material", Proceedings  of Academy of Information and Management Sciences,  New Orleans, 16(1), pp. 11{18 (2012).  34. Faraz, A. and Saniga, E. Economic statistical design  of a T2 control chart with double warning lines",  Quality and Reliability Engineering International, 27,  pp. 125{139 (2011).  35. Bashiri, M., Amiri, A., Doroudyan, M.H., and Asgari,  A. Multi-objective genetic algorithm for economic  statistical design of control chart", Scientia Iranica,  20, pp. 909{918 (2013).  36. Chih, M., Yeh, L.L., and Li, F.C. Particle swarm  optimization for the economic and economic statistical  designs of the control chart", Applied Soft Computing,  11, pp. 5053{5067 (2011).  37. Talbi, E.G., Metaheuristics from Design to Implementation,  John Wiley & Sons, Inc. (2009).  38. Niaki, S.T.A., Malaki, M., and Ershadi, M.J. A  particle swarm optimization approach on economic  and economic-statistical designs of MEWMA control  charts", Scientia Iranica, 18, pp. 1529{1536 (2011).  39. Hajinejad, D., Salmasi, N., and Mokhtari, R. A fast  hybrid particle swarm optimization algorithm for ow  shop sequence dependent group scheduling problem",  Scientia Iranica, 18, pp. 759{764 (2011).  40. Kennedy, J., Eberhart, R.C., and Shi, Y., Swarm Intelligence,  San Francisco, Morgan Kaufmann Publishers  (2001).  41. Perez, R.E. and Behdinan, K. Particle swarm approach  for structural design optimization", Computers  & Structures, 85, pp. 1579{1588 (2007).  42. Lee, B.H. and Rahim, M.A. An integrated economic  design model for quality control, replacement, and  maintenance", Quality Engineering, 13, pp. 581{593  (2001).  43. Safaei, A.S, Kazemzadeh R.B., and Gan H.S. Robust  economic-statistical design of X-bar control chart",  International Journal of Production Research, 53, pp.  4446{4458 (2015).  44. Seif, A., Faraz A., and Sadeghifar M. Evaluation  of the economic statistical design of the multivariate  T2 control chart with multiple variable sampling  intervals scheme: NSGA-II approach", Journal of  Statistical Computation and Simulation, 85, pp. 2442{  2455 (2015).