Combination of Marx generator and capacitor diode voltage multiplier for pulsed power applications

Document Type : Research Note


Faculty of Electrical and Computer Engineering, University of Kashan, Ghotb-e-Ravandi Blv., Kashan, Iran


Recently, the pulsed power and pulsed electric field systems used in various industries and these systems have found wide applications. For this reason, using the pulsed power generators that in addition to responding to the needs of the user, are providing the advantages of compactness, high flexibility, high repetition rate and cost efficiency is inevitable. In this paper a hybrid solid state pulsed power generator is introduced that is modular and very flexible. This converter which is a combination of Marx and capacitor diode voltage multiplier, is capable of producing high voltage pulses with varying amplitudes at different frequencies. This proposed converter due to having high reliability, low cost, low weight, and structure’s simplicity can cover a wide area of applications. In this paper after introducing the proposed topology, its analytical design is described and its verification is proved by the simulation results in MATLAB\SIMULINK and by presenting the measurement results taken from the experimental prototype in low voltages.


Main Subjects

1. Beebe, S. Mechanisms of Nanosecond Pulsed Electric Field (NsPEF)-induced cell death in cells and tumors", Jour. Nanomedicine Research, 2(1), pp. 16{28 (2015). 2. Yu, B., Muenster, S., Blaesi, A.H., Bloch, D.B., and Zapol, W.M. Producing nitric oxide by pulsed electrical discharge in air for portable inhalation therapy", Sci. Translational Medicine, 7(1), pp. 294{301 (2015). 3. Jiang, S.,Wen, Y., and Liu, K. Investigation of pulsed dielectric barrier discharge system on water treatment by liquid droplets in air", IEEE Trans. Dielectr. Electr. Insul., 22(4), pp. 1866{1871 (2015). 4. Koutahzadeh, N., Esfahani, M.R., and Arce, P.E. Removal of acid black 1 from water by the pulsed corona discharge advanced oxidation method", Jour. Water Proc. Eng., 30(1), pp. 1{8 (2016). 5. Streubel, R., Bendt, G., and Gokce, B. Pilot-scale synthesis of metal nanoparticles by high-speed pulsed laser ablation in liquids", Nanotechnology, 27(20), pp. 205602{205701 (2016). 6. Jiang, W., Yatsui, K., Takayama, K., Akemoto, M., Nakamura, E., and Shimizu, N. Compact solid-state M. Kebriaei et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1506{1514 1513 switched pulsed power and its applications", Proc. of the IEEE, 92, pp. 1180{1196 (2004). 7. Sakamoto, T., Nami, A., Akiyama, M., and Akiyama, H. A repetitive solid state Marx-type pulsed power generator using multistage switch-capacitor cells", IEEE Trans. Plasma Sci., 40(10), pp. 2316{2321 (2012). 8. Redondo, L. A DC voltage-multiplier circuit working as a high-voltage pulse generator", IEEE Trans. Plasma Sci., 38(10), pp. 2725{2729 (2010). 9. Won, J.S., Kim, D.H., Ro, C.G., Lee, K.S., Kim, K., and Lee, H.W. Characteristics of the forward type high voltage pulse power supply for lamp type ozonizer", Proc. Power Convers. Conf., Osaka, Japan, pp. 100{103 (2002). 10. Wang, C. and Zhang, Q.H. EMI and its elimination in an integrated high voltage (12 kV) pulse generator", Proc. 26th IECON Conf., 2, pp. 1044{1049 (2002). 11. Tian, X., Wang, X., Tang, B., Chu, P.K., and Cheng, Y.C. Special modulator for high frequency, lowvoltage plasma immersion ion implantation", Rev. Sci. Instrum., 70(3), pp. 1824{1828 (1999). 12. Wang, F., Kuthi, A., Jiang, C., Zhou, Q., and Gundersen, M. Flyback resonant charger for high repetition rate pseudospark pulse generator", Proc. Power Modulator Conf. Symp., pp. 85{88 (2004). 13. Giesselman, M. and Heeren, T. Rapid capacitor charger", Proc. Power Modulator Conf. Symp., pp. 146{149 (2002). 14. Kim, S.M., Ehsani, M., and Kim, C.S. High-voltage power supply using series-connected full-bridge PWM converter for pulsed power applications", IEEE Trans. Dielectr. Electr. Insul., 22(4), pp. 1937{1944 (2015). 15. Rezanejad, M., Sheikholeslami, A., and Adabi, J. Modular switched capacitor voltage multiplier topology for pulsed power supply", IEEE Trans. Dielectr. Electr. Insul., 21(2), pp. 635{643 (2014). 16. Acharya, M. and Shrivastava, P. Design and development of a prototype 25 kV, 10 A long pulse Marx modulator for high power klystron", Rev. Sci. Instrum., 87(2), pp. 25114{25122 (2016). 17. Shen, Y., Wang, W., Liu, Y., Xia, L., Zhang, H., Pan, H., Zhu, J., Shi, J., Zhang, L., and Deng, J. A compact 300 kV solid-state high-voltage nanosecond generator for dielectric wall accelerator", Rev. Sci. Instrum., 86(5), pp. 55110{55119 (2015). 18. Srivastava, P.K., Singh, S.K., Sanyasi, A.K., Awasthi, L.M., and Mattoo, S.K. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device", Rev. Sci. Instrum., 87(7), pp. 73501{73508 (2016). 19. Elserougi, A.A., Massoud, A.M., and Ahmed, S. A modular high-voltage pulse-generator with sequential charging for water treatment applications", IEEE Trans. Industrial Electronics, 63(12), pp. 7898{7907 (2016). 20. Adachi, T., Arai, T., Leo, K.W., Takayama, K., and Tokuchi, A. A solid-state Marx generator driven Einzel lens chopper", Rev. Sci. Instrum., 82(2), pp. 83305{83401 (2011). 21. Biela, J., Aggeler, D., Bortis, D., and Kolar, J.W. Balancing circuit for a 5-kV/50-ns pulsed-power switch based on SiC-JFET super cascode", IEEE Trans. Plasma Sci., 40(10), pp. 2554{2560 (2012). 22. Sakamoto, T. and Akiyama, H. Solid-state dual Marx generator with a short pulsewidth", IEEE Trans. Plasma Sci., 41(10), pp. 2649{2653 (2013). 23. Souda, M., Endo, F., Yamazaki, C., Okamura, K., and Fukushima, K. Development of high power capacitor charging power supply for pulsed power applications", 12th Pulsed Power Conf., 2, pp. 1414{1416 (1999). 24. Sheng, H., Shen, W., Wang, H., Fu, D., Pei, Y., Yang, X., Wang, F., Boroyevich, D., Lee, F.C., and Tipton, C.W. Design and implementation of a high power density three-level parallel resonant converter for capacitor charging pulsed-power supply", IEEE Trans. Plasma Sci., 39(4), pp. 1131{40 (2011). 25. Zhang, Y., Wu, J., Li, Z., Jin, Y., Tian, H., Li, W., and Li, B. Design of compact high-voltage capacitor charging power supply for pulsed power application", 2015 IEEE Pulsed Power Conf., pp. 1{5 (2015). 26. Young, C.M., Chen, M.H., Chang, T.A. Ko, C.C., and Jen, K.K. Cascade Cockcroft-Walton voltage multiplier applied to transformerless high step-up DCDC converter", IEEE Trans. Indus. Electr., 60(3), pp. 523{537 (2013). 27. Elserougi, A. Massoud, A.M., Ibrahim, A.M., and Ahmed, S. A high voltage pulse-generator based on DC-to-DC converters and capacitor-diode voltage multipliers for water treatment applications", IEEE Trans. Dielectr. Electr. Insul, 22(6), pp. 3290{3298 (2015). 28. Kobougias, I.C. and Tatakis, E.C. Optimal design of a half wave cockroft-walton voltage multiplier with di_erent capacitances per stage", 13th Power Electr. and Motion Control Conf., pp. 1274{1279 (2008). 29. Alcazar, Y.J., Oliveira, D.S., Tofoli, F.L., and Torrico- Bascop_e, R.P. DC-DC nonisolated boost converter based on the three-state switching cell and voltage multiplier cells", IEEE Trans. Indus. Electr., 60(10), pp. 4438{4449 (2013). 30. Hu, X. and Gong, C. A high voltage gain dcdc converter integrating coupled-inductor and diodecapacitor techniques", IEEE Trans. Power Electr., 29(2), pp. 789{800 (2014). 31. Axelrod, B. and Berkovich, Y. External characteristics of the boost-converter with Cockroft-Walton voltage multiplier", EDPE Conf., pp. 48{53 (2015). 1514 M. Kebriaei et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1506{1514 32. Axelrod, B., Beck, Y., and Berkovich, Y. High stepup DC-DC converter based on the switched-coupledinductor boost converter and diode-capacitor multiplier: steady state and dynamics", IET Power Electr., 8(8), pp. 1420{1428 (2015). 33. Zabihi, S., Zare, F., Ledwich, G., Ghosh, A., and Zabihi, Z. A novel CDVM based high-voltage converter using low power solid-state switches and a tuned resonant circuit designed for pulsed power applications", 3rd PEDSTC, pp. 454{460 (2012). 34. Mao, S., Popovic, J., and Ferreira, J.A. High voltage pulse speed study for high voltage DC-DC power supply based on voltage multipliers", 17th Euro. Conf. Power Electr. and Applications, pp. 1{10 (2015). 35. Rezanejad, M., Sheikholeslami, A., and Adabi, J. High-voltage pulsed power supply to generate wide pulses combined with narrow pulses", IEEE Trans. Plasma Sci., 42(7), pp. 1894{901 (2014). 36. Kebriaei, M., Ketabi, A., and Halvaei Niasar, A. Modular hybrid solid state pulsed power generator", IEEE Trans. Dielectr. Electr. Insul, 24(4), pp. 2234{ 2240 (2017). 37. Kebriaei, M., Ketabi, A., and Halvaei Niasar, A. A new resonant CDVM topology for pulsed power application", Proc. 24th Iranian Conf. Electrical Eng., pp. 1{8 (2016). 38. O'Loughlin, J., Lehr, J., and Loree, D. High repetition rate charging a Marx type generator", Pulsed Power Plasma Science (PPPs-2001), pp. 242{245 (2001). 39. Zabihi, S., Zare, F., Ledwich, G., and Ghosh, A. A novel high voltage pulsed power supply based on low voltage switch-capacitor units", IEEE Trans. Plasma Sci., 38(10), pp. 2877{2887 (2010).