A review on SPT-based liquefaction potential evaluation to assess the possibility of performing a risk management

Document Type : Article


1 Department of Civil Engineering, University of Qom, Qom, Iran.

2 Department of Engineering Geology, School of Geology, College of Science, University of Tehran, Tehran, Iran.


Liquefaction is a serious natural hazard in susceptible regions which are prone to earthquakes. According to empirical and field studies, insufficiency of liquefaction assessment methods in determining liquefaction through clays and high prediction errors has caused an unceasing new development. In this article we present a comprehensive history review to organize literature on the liquefaction potential evaluation published prior to 2017. We consider deterministic approach based on SPT (Standard Penetration Test) records to create an appropriate connection between the different methods, facilitate reviewing the development of correlations in the past and current decades, assess both the cyclic stress and the flow liquefactions in a unified system, compile the latest research developments and identify the main sources as a database for the future investigators. The study attempts to assess cyclic stress method (1971) and Chinese criteria (1982) in evaluating the liquefaction potential and to discuss the insufficiencies of these methods with reference to the liquefactions caused by the Chi-chi (Taiwan) and Adapazari (Turkey) earthquakes in 1999. Besides, the absence of soil improvement on the basis of vulnerability and performance is identified as a research gap in this study.


Main Subjects

1. Finn, W.D.L. State of the art geotechnical earthquake  engineering practice", Soil Dynamics and Earthquake  Engineering, 20, pp. 1{15 (2000).  2. Das, B.M. and Ramana, G.V., Principles of Soil  Dynamics, Second Edition, CENGAGE Learning Publication,  ISBN-13: 978-0-495-41134-5 (2010).  3. Bray, J.D. and Macedo, J. 6th Ishihara lecture: Simpli  _ed procedure for estimating liquefaction-induced  building settlement", Soil Dynamics and Earthquake  Engineering, 102, pp. 215{231 (2017).  4. Seed, H.B. and Idriss, I.M. Simpli_ed procedure for  evaluating soil liquefaction potential", Journal of the  Soil Mechanics and Foundation Division, 97(SM9),  Proc. Paper 8371, pp. 1249{1273 (1971).  5. Cetin, K.O., Seed, R.B., Kiureghian, A.D., Tokimatsu,  K., Harder, L.F., Kayen, R.E., and Moss,  E.S. Standard penetration test-based probabilistic  and deterministic assessment of seismic soil liquefaction  potential", Geotechnical and Geoenvironmental  Engineering, 130(12), pp. 1314{1340 (2004).  6. Seed, H.B. and Idriss, I.M., Ground Motion and Soil  Liquefaction During Earthquakes, Earthquake Engineering  Research Institute, Oakland, Ca (1982).  7. Andrews, D.C.A. and Martin, G.R. Criteria for liquefaction  of silty soils", 12th World Conference on  Earthquake Engineering, Proceedings, Auckland, New  Zealand (2000).  8. Bray, J.D., Sancio, R.B., Durgunoglu, T., Onalp, A.,  Seed, R.B., Stewart, J.P., Youd, T.L., Baturay, M.L.,  Cetin, K.O., Christensen, C., Karadayilar, T., and  Emrem, C. Ground failure in Adapazari, Turkey.  Proceedings of earthquake geotechnical engineering  satellite conference of the XVth", International Conference  on Soil Mechanics and Geotechnical Engineering,  Istanbul, Turkey, August 24{25 (2001).  9. Sancio, R.B., Bray, J.D., Stewart, J.P., Youd, T.L.,  Durgunoglu, H.T., Onalp, A., Seed, R.B., Christensen,  C., Baturay, M.B., and Karadayilar, T. Correlation  between ground failure and soil conditions in  Adapazari, Turkey", Soil Dynamics and Earthquake  Engineering, 22, pp. 1093{1102 (2002).  10. Chu, D.B., Stewart, J.P., Lee, S., Tsai, J.S., Lin,  P.S., Chu, L.B., Seed, R.B., Hsu, S.C., Yu, M.S.,  and Wang, M.C. Documentation of soil conditions  at liquefaction and non-liquefaction sites from 1999  Chi-Chi (Taiwan) earthquake", Soil Dynamics and  Earthquake Engineering, 24, pp. 647{657 (2004).  11. Chang, M., Kuo, C.P., Shau, S.H., and Hsu, R.E.  Comparison of SPT-N-based analysis methods in  evaluation of liquefaction potential during the 1999  Chi-Chi earthquake in Taiwan", Computers and  Geotechnics, 38, pp. 393{406 (2011).  12. Tokimatsu, K., and Yoshimi, Y. Empirical correlation  of soil liquefaction based on SPT-N values and _nes  content", Soils and Foundations, 23(4), pp. 56-74  (1983).  13. Youd, T.L., Idriss, I.M., Andrus, R.D., et al. Liquefaction  resistance of soils: Summary report from the  1996 NCEER and 1998 NCEER/NSF workshops on  evaluation liquefaction resistance of soils", Geotechnical  and Geoenvironmental Engineering, 127(4) pp.  297{313 (1998).  14. Japan Rail Association (JRA) Design code and explanations  for roadway bridges", Part V, Seismic  Resistance Design, Japan (1996).  15. Seed, R.B., Cetin, K.O., Moss, R.E.S., Kammerer,  A.M., Wu, J., Pestana, J.M., Riemer, M.F., Sancio,  R.B., Bray, J.D., Kayen, R.E., and Faris, A. Recent  advances in soil liquefaction engineering: A uni_ed  and consistent framework", 26th Annual ASCE Los  Angeles Geotechnical Spring Seminar, Keynote Presentation,  HMS. Queen Mary, Long Beach, California,  Berkeley, Earthquake Engineering Research Center  (EERC) (2003).  16. Sato, H., Nhan, T.T., and Matsuda, H. Earthquake  induced settlement of a clay layer", Soil Dynamics and  Earthquake Engineering, 104, pp. 418{431 (2018).  17. Casagrande, A. The structure of clay and its importance  in foundation engineering", Contribution to  Soil Mechanics, 1925{1940, Boston Society of Civil  Engineering, pp. 257{276 (1932).  18. Castro, G. Liquefaction of sands", Harvard Soil  Mechanics Series, 81, Harvard University, Cambridge,  MA (1969).  19. Ishihara, K. Liquefaction and ow failure during  earthquakes: Thirty-third rankine lecture", Geotechnique,  43(3), pp. 351{415 (1993).  20. Robertson, P.K. and Wride, C.E. Evaluating cyclic  liquefaction potential using the cone penetration test",  Canadian Geotechnical Journal, 35(3), pp. 442{459  (1998).  21. Javanmardi, Y., Imam, S.M.R., Pastor, M., and Manzanal,  D. A reference state curve to de_ne the state  of soils over a wide range of pressures and densities",  Geotechnique, 68(2), pp. 95{106 (2018).  22. Andrus, R.D. and Stokoe, K.H. Liquefaction resistance  based on shear wave velocity", NCEER Workshop  on Evaluation of Liquefaction Resistance of Soils,  NCEER-97-0022 (1997).  E. Ghorbani and A.M. Rajabi/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 639{656 655  23. Hynes, M.E., Olsen, R., and Yule, D.E. Inuence of  con_ning stress on liquefaction resistance", Proc, International  Symposium on the Physics and Mechanics  of Liquefaction, Balkema, pp. 145{152 (1998).  24. Bay, J.A. and Cox, B.R. Shear wave velocity pro_ling  and liquefaction assessment of sites shaken by the 1999  Kocaeli", Turkey Earthquake, PEER project SA3017{  18336 (2001).  25. Idriss, I.M. and Boulanger, R.W. Semi-empirical  procedures for evaluating liquefaction potential during  earthquakes", Soil Dynamics and Earthquake Engineering,  26, pp. 115{130 (2006).  26. Boulanger, R.W. High overburden stress e_ects in  liquefaction analysis", Geotechnical and Geoenvironmental  Engineering, 129(12), pp. 1071{1082 (2003).  27. Boulanger, R.W. and Idriss, I.M. State normalization  of penetration resistance and the e_ect of overburden  stress on liquefaction resistance", 11th International  Conference on Soil Dynamics and Earthquake Geotechnical  Engineering, University of California, Berkeley,  CA (2004).  28. Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung,  R.M. The inuence of SPT procedures in soil liquefaction  resistance evaluations", Journal of Geotechnical  Engineering, ASCE, 111(12), pp. 1425{1445 (1985).  29. Gratchev, I.B., Sassa, K., Osipov, V.I., and Sokolov,  V.N. The liquefaction of clayey soils under cyclic  loading", Engineering Geology, 86, pp. 70{84 (2006).  30. Idriss, I.M. and Boulanger, R.W. Evaluating of cyclic  softening in silts and clays", Geotechnical and Geoenvironmental  Engineering, 133(6), pp. 641{652 (2015).  31. Seed, H.B. Earthquake-resistance design of earth  dams", Proc., Symp. Seismic Design of Earth Dams  and Caverns, ASCE, New York, pp. 41{64 (1983).  32. Seed, H.B. and Harder, L.F. SPT-based analysis of  cyclic pore pressure generation and undrained residual  strength", Proceedings, Seed Memorial Symposium,  Vancouver, BiTech Publishers, pp. 351{376 (1990).  33. Finn, W.D.L. State of the art for the evaluation  of seismic liquefaction potential", Computers and  Geotechnics, 29, pp. 329{341 (2002).  34. Boulanger, R.W. and Idriss, I.M. Evaluation of cyclic  softening in silts and clays", Geotechnical and Geoenvironmental  Engineering, 33(6), pp. 641{652 (2007).  35. Kishida, T. and Tsai, C. Seismic demand of the  liquefaction potential with equivalent number of cycles  for probabilistic seismic hazard analysis", Geotechnical  and Geoenvironmental Engineering, 140(3), 04013023  (2014). DOI: 10.1061/(ASCE)GT.1943{5606.0001033  36. Boulanger, R.W. and Idriss, I.M. Magnitude scaling  factors in liquefaction triggering procedures", Soil  Dynamics and Earthquake Engineering, 79, pp. 296{  303 (2015). DOI: 10.1016/j.soildyn.2015.01.004  37. Idriss, I.M. and Boulanger, R.W., Soil Liquefaction  During Earthquakes, EERI Publication, Monograph  MNO{12 Earthquake Engineering Research Institute,  Oakland (2008).  38. Kondoh, M., Sasaki, Y., and Matsumoto, H. E_ect  of _nes contents on soil liquefaction strength (Part  1)", Proceedings of the Annual Meeting of the Japanese  Society of Soil Mechanics and Foundation Engineering,  Public Works Research Institute, Ministry of Construction,  Tsukuba, Japan (1987).  39. Liao, S.S.C. and Whitman, R.V. Overburden correction  factor for SPT in sand", Journal of Geotechnical  Engineering, 112(4), pp. 373{377 (1986).  40. Idriss, I.M. An update to the Seed-Idriss simpli_ed  procedure for evaluating liquefaction potential", Proceedings  of TRB Workshop on New Approaches to Liquefaction,  Publication No. FHWA-RD-99-165, Federal  Highway Administration, Washington DC (1999).  41. Andrus, R.D., Piratheepan, P., Ellis, B.S., Zhang, J.,  and Juang, C.H. Comparing liquefaction evaluation  methods using penetration-Vs relationships", Soil Dynamics  and Earthquake Engineering, 24, pp. 713{721  (2004).  42. Idriss, I.M. and Boulanger, R.W. SPT- and CPTbased  relationships for the residual shear strength of  lique_ed soils", Soil Dynamics and Earthquake Engineering,  68, pp. 57{68 (2014).  43. Cao, Z., Youd, T.L., and Yuan, X. Chinese dynamic  penetration test for liquefaction evaluation in gravelly  soils", Geotechnical and Geoenvironmental Engineering,  139(8), pp. 1320{1333 (2013).  44. Kim, J., Kawai, T., Kazama, M., and Mori, T.  Density index for estimating the postliquefaction  volumetric strain of silty soils", International Journal  of Geomechanics, 16(5), C4015005 (2016). DOI:  10.1061/(ASCE)GM.1943-5622.0000574  45. Dewoolkar, M., Hargy, J., Anderson, I., Alba,  P.D., and Olson, S.M. Residual and postliquefaction  strength of a lique_able sand", Journal of Geotechnical  and Geoenvironmental Engineering, 142(2), 04015068  (2015). DOI: 10.1061/(ASCE)GT.1943-5606.0001374  46. Ishihara, K., Harada, K., Lee, W.F., Chan, C.C.,  and Sa_ullah, A.M.M. Post-liquefaction settlement  analysis based on the volume change characteristics  of undisturbed and reconstituted samples", Soils and  Foundations, 56(3), pp. 533{546 (2016).  47. Kim, J., Kawai, T., and Kazama, M. Laboratory  testing procedure to assess post-liquefaction deformation  potential", Soils and Foundation, 57, pp. 905{919  (2017).  48. Kramer, S.L., Sideras, S.S., and Green_eld, M.W.  The timing of liquefaction and its utility in liquefaction  hazard evaluation", Soil Dynamics and Earthquake  Engineering, 91(C), pp. 133{146 (2016). DOI:  10.1016/j.soildyn.2016.07.025  656 E. Ghorbani and A.M. Rajabi/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 639{656  49. CSA (Canadian Standard Association), Risk Management:  Guideline for Decision-Makers (CAN/CSAQ850-  97), Rexdale, Ontario: Canadian Standard Association  (1997).  50. Vahdat, K., Smith, N.J., and Amiri, G.G. Fuzzy  multicriteria for developing a risk management system  in seismically prone area", Socia-Economic Planning  Sciences, 48, pp. 235{248 (2014).  51. Baker, J.W. and Faber, M.H. Liquefaction risk assessment  using geostatistics to account for soil special  variability", Geotechnical and Geoenvironmental Engineering,  134(1), pp. 14{23 (2008).  52. Kramer, S.L. and May_eld, R.T. Performance-based  liquefaction hazard evaluation", Earthquake Engineering  and Soil Dynamics, Geo-Frontiers Congress, January  24-26, Austin, Texas, United States (2005). DOI:  10.1061/40779(158)21