CuO/WO3/TiO2 photocatalyst for degradation of phenol wastewater

Document Type : Article

Authors

Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran

Abstract

Cuo/WO3/TiO2 photocatalyst was prepared applying the sol-gel combustion method. It was characterized by X-ray fluorescence spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, porosimetry, and scanning electron microscopy techniques. The activity of CuO/WO3/TiO2 was investigated for the photocatalytic degradation of phenol wastewater. Operating conditions of batch experiments such as initial concentration of phenol, photocatalyst dose, amount of H2O2, and pH were optimized. Rate constants of the pseudo first order reaction for several photocatalysts were determined (TiO2: 0.0054 min-1, WO3/TiO2: 0.0071 min-1, CuO/TiO2: 0.0118 min-1, CuO/WO3/TiO2: 0.0621 min-1). The CuO/WO3/TiO2 had the best performance, and its rate constant was 11.5 times greater than TiO2. The CuO/WO3/TiO2 activity under sun light was considerable. The activity of CuO/WO3/TiO2 for 4-chlorophenol, and 3-phenyl-1-propanol degradation was also successful.

Keywords

Main Subjects


References
1. Choquette-Labbe, M., Shewa, W.A., Lalman, J.A.,
and Shanmugan, S.R. Photocatalytic degradation of
phenol and phenol derivatives using a Nano-TiO2 catalyst:
Integrating quantitative and qualitative factors
using response surface methodology", Water, 6, pp.
1785-1806 (2014).
2. Malakootian, M., Mansoorian, H.J., Alizadeh, M., and
Baghbanian, A. Phenol removal from aqueous solution
by adsorption process: Study of the nanoparticles
performance prepared from aloe vera and mesquite
(prosopis) leaves", Sci. Iran Trans. C., 24(6), pp. 3041-
3052 (2017).
3. Ray, A.K. and Beenackers, A.A.C.M. Novel photocatalytic
reactor for water puri cation", AIChE J., 44(2),
pp. 447-483 (1998).
4. Cruz, M., Gomez, C., Duran-Valle, C.J., Pastrana-
Martnez, L.M., Faria, J., Silva, A.M.T., Faraldos, M.,
and Bahamonde, A. Bare TiO2 and graphene oxide
TiO2 photocatalysts on the degradation of selected
pesticides and in
uence of the water matrix", Appl.
Surf. Sci., 416, pp. 1013-1021 (2017).
5. Ngamsopasiriskun, C., Charnsethikul, S., Thachepan,
S., and Songsasen, A. Removal of phenol in aqueous
solution by nanocrystalline TiO2/activated carbon
composite catalyst", Kasetsart J. (Nat. Sci.), 44, pp.
1176-1182 (2010).
6. Sohrabi, S., Akhlaghian, F. Surface investigation and
3352 F. Akhlaghian and A. Naja /Scientia Iranica, Transactions C: Chemistry and ... 25 (2018) 3345{3353
catalytic activity of iron-modi ed TiO2", J. Nanostruct.
Chem., 6, pp. 93-102 (2016).
7. Nakano, K., Obuchi, E., Takagi, S., Yamamoto, R.,
Tanizki, T., Taketomi, M., Eguchi, M., Ichida, K.,
Suzuki, M., and Hashimoto, A. Photocatalytic treatment
of water containing dinitrophenol and city water
over TiO2/SiO2", Sep. Purif. Technol., 34, pp. 67-72
(2004).
8. Lorret, O., Francova, D., Waldner, G., and Stelzer,
N. W-doped titania nanoparticles for UV and visiblelight
photocatalytic reactions", Appl. Catal. B: Environ.,
91, pp. 39-46 (2009).
9. Jeon, J.W., Kim, J.R., and Ihm, S.K. Continuous
one-step synthesis of N-doped titania under supercritical
and subcritical water conditions for photocatalytic
reaction under visible light", J. Phys. Chem. Solids,
71, pp. 608-611 (2010).
10. Luenloi, T., Chalermsinsuwan, B., Sreethawong, T.,
and Hinchiranan, N. Photodegradation of phenol
catalyzed by TiO2 coated on acrylic sheets: Kinetics
and factorial design analysis", Desalination, 274, pp.
192-199 (2011).
11. Dougna, A.A., Gombert, B., Kodom, T., Djaneye-
Boundjou, G., Boukari, S.O.B., Leitner, N.K.V., and
Bawa, L.M. Photocatalytic removal of phenol using
titanium dioxide deposited on di erent substrates:
E ect of inorganic oxidants", J. Photoch. Photobio. A,
30, pp. 67-77 (2015).
12. Akhlaghian, F. and Sohrabi, S. Fe/TiO2 catalyst for
photodegradation of phenol in water", I.J.E. Transactions
A., 28, pp. 499-506 (2015).
13. Sohrabi, S. and Akhlaghian, F. Modeling and optimization
of phenol degradation over copper-doped
titanium dioxide photocatalyst using response surface
methodology", Process Saf. Environ., 99, pp. 120-128
(2016).
14. Sedghi, A., Baghshahi, S., Riahi Nouri, N., and
Barkhordari, M. Synthesis of titanium oxide nano
powder by a novel gel combustion method", D.J.
Nanomater. Biostruc., 6, pp. 1457-1462 (2011).
15. Shokrani, R., Haghighi, M., Jodeiri, N., Ajamein,
H., and Abdollahifar, M. Fuel cell grade hydrogen
production via methanol steam reforming over
CuO/ZnO/Al2O3 nanocatalyst with various oxide ratios
synthesized via urea nitrates combustion method",
Int. J. Hydrogen Energ., 39, pp. 13141-13155 (2014).
16. Casta~no, M.H., Molina R., and Moreno, S. Oxygen
storage capacity and oxygen mobility of Co-Mn-Mg-Al
mixed oxides and their relation in the VOC oxidation
reaction" Catalysts, 5, pp. 905-925 (2015).
17. Nezamzadeh-Ejhieh, A., and Salimi, Z. Heterogeneous
photodegradation catalysis of o-phenylenediamine
using CuO/X zeolite", Appl. Catal. A: Gen.,
390, pp. 110-118 (2010).
18. Tseng, I.-H. Chang, W.C., and Wu, J.C.S. Photoreduction
of CO2 using sol-gel derived titania and
titania-supported copper catalysts", Appl. Catal. B:
Environ., 37, pp. 37-48 (2002).
19. Tseng, I.-H. andWu, J.C.S. Chemical states of metalloaded
titania in the photoreduction of CO2", Catal.
Today, 97, pp. 113-119 (2004).
20. Yu, J.-G., YU, H.-G., Cheng, B., Zhao, X.-Y., Yu,
J.C., and Ho, W.-K. The e ect of calcination temperature
on the surface microstructure and photocatalytic
activity of TiO2 thin lms prepared by liquid phase
deposition", J. Phy. Chem. B, 107, pp. 13871-13879
(2003).
21. Leofanti, G., Padovan, M., Tozzola, G., and Venturelli,
B. Surface area and pore texture of catalysts", Catal.
Today, 41, pp. 207-219 (1998).
22. Milosev, I., Kosec, I., and Strehblow, H.-H. XPS and
EIS study of the passive lm formed on orthopaedic
Ti-6Al-7Nb alloy in Hank's physiological solution",
Electrochim. Acta, 53, pp. 3547-3558 (2008).
23. Su~nol, J.J. Bonneau, M.E., Roue, L., Guay, D., and
Schulz, R. XPS surface study of nanocrystalline Ti-
Ru-Fe materials", Appl. Surf. Sci., 158, pp. 252-262
(2000).
24. Occhiuzzi, M., Cordischi, D., Gazzoli, D., Valigi,
M., and Heydorn, P.C. WOx/ZrO2 catalysts Part 4.
Redox properties as investigated by redox cycles, XPS
and EPR", Appl. Catal. A: Gen., 269, pp. 169-177
(2004).
25. Dupin, J.C., Gonbeau, D., Martin-Litas, I., Vinatier,
Ph., and Levasseur, A. Amorphous oxysul de thin
lms MOySz (M=W, Mo, Ti) XPS characterization:
structural and electronic peculiarities", Appl. Surf.
Sci., 173, pp. 140-150 (2001).
26. Ethiraj, A.S., and Kang, D.J. Synthesis and characterization
of CuO nanowires by a simple wet chemical
method", Nanoscale Res. Lett., 7, pp. 1-5 (2012).
27. Pouretedal, H.R., Norozi, A., Keshavarz, M.H., and
Semnani, A. Nanoparticles of zinc sul de doped with
manganese, nickel and copper as nanophotocatalyst in
the degradation of organic dyes", J. Hazard. Mater.,
162, pp. 674-681 (2009).
28. Ahmed, S., Rasul, M.G., Martens, W.N., Brown,
R., and Hashib, M.A. Heterogeneous photocatalytic
degradation of phenols in wastewater: A review on
current status and developments", Desalination, 261,
pp. 3-18 (2010).
29. Xu, Y., and Schoonen, M.A.A. The absolute energy
positions of conduction and valence bands of selected
semiconducting minerals", Am. Mineral., 85, pp. 543-
556 (2000).
30. Mageshwari, K., Nataraj, D., Pal, D., Sathyamoorthy,
R., and Park, J. Improved photocatalytic activity
of ZnO coupled CuO nanocomposites synthesized by
re
ux condensation method", J. Alloy. Compd., 625,
pp. 362-370 (2015).
F. Akhlaghian and A. Naja /Scientia Iranica, Transactions C: Chemistry and ... 25 (2018) 3345{3353 3353