Refrences:
1.Bowles, A. and Cheesewright, R. Direct measurements of the turbulence heat ux in a large rectangular air cavity", Experimental Heat Transfer, 2, pp. 59-69 (1989). DOI: 10.1080/08916158908946354
2. Saury, D., Rouger, N, Djanna, F., and Penot, F. Natural convection in an air-_lled cavity: Experimental results at large Rayleigh numbers", Int. Communications of Heat and Mass Transfer, 38, pp. 679-687 (2011). DOI: 10.1016/j.icheatmasstransfer.2011.03.019
3. Dafa'Alla, A.A. and Betts, P.L. Experimental study of turbulent natural convection in a tall air cavity", Exp. Heat Transfer, 9, pp. 165-194 (1996). DOI: 10.1080/08916159608946520 4. Betts, P.L. and Bokhari, I.H. Experiments on turbulent natural convection in an enclosed tall cavity", Int. J. of Heat and Fluid Flow, 21, pp. 675-683 (2000). DOI: 10.1016/S0142-727X(00)00033-3 5. Kirkpatrick, A.T. and. Bohn, M. An experimental investigation of mixed cavity natural convection in the high Rayleigh number regime", Int. J. of Heat and Mass Transfer, 29, pp. 69-82 (1986). DOI: 10.1016/0017-9310(86)90035-9 6. Tian, Y.S. and Karayiannis, T.G. Low turbulence natural convection in an air _lled square cavity", Part I, Int. J. of Heat and Mass Transfer, 43, pp. 849-866 (2000). DOI: 10.1016/S0017-9310(99)00199-4 7. Tian, Y.S. and Karayiannis, T.G. Low turbulence natural convection in an air _lled square cavity", Part II, Int. J. of Heat and Mass Transfer, 43, pp. 867-884 (2000). DOI: 10.1016/S0017-9310(99)00200-8 8. Ampofo, F. and Karayiannis, T.G. Experimental benchmark data for turbulent natural convection in an air _lled square cavity", Int. J. of Heat and Mass Transfer, 46, pp. 3551-3572 (2003). DOI: 10.1016/S0017-9310(03)00147-9 9. Salat, J., Xin, S., Joubert, P., Sergent, A., Penot, F., and Le Qu_er_e, P. Experimental and numerical investigation of turbulent natural convection in a large air-_lled cavity", Int. J. of Heat and Fluid Flow, 25, pp. 824-832 (2004). DOI: 10.1016/j.ijheatuidow.2004.04.003 10. De Vahl Davis, G. Natural convection of air in a square cavity: a bench mark numerical solution", Int. J. for Numerical Methods in Fluids, 3, pp. 249-264 (1983). DOI: 10.1002/d.1650030305 11. Hortmann, M. Peric, M., and Scheuerer, G. Finite volume multigrid prediction of laminar natural convection: Bench-mark solutions", Int. J. for Numererical Methods in Fluids., 11, pp. 189-207(1990). DOI: 10.1002/d.1650110206 12. Le Quere, P. Accurate solutions to the square thermally driven cavity at high Rayleigh number", Computers & Fluids, 20(1), pp. 29-41 (1991). DOI: 10.1016/0045-7930(91)90025-D 13. Phillips, T.N. Natural convection in an enclosed cavity", J. of Computational Physics, 54(3), pp. 365- 381 (1984). DOI: 10.1016/0021-9991(84)90123-2 14. Launder, B.E. and Spalding, D.B. The numerical computation of turbulent ows", Computer Methods in Applied Mechanics and Engineering, 3, pp. 269-289 (1974). DOI: 10.1016/0045-7825(74)90029-2 15. Ince, N.Z. and Launder, B.E. On the computation of buoyancy-driven turbulent ows in rectangular enclosures", Int. J. of Heat and Fluid Flow, 10, pp. 110-117 (1989). DOI: 10.1016/0142-727X(89)90003-9 16. Jones, W.P. and Launder, B.E. The prediction of laminarization with a two-equation model of turbulence", Int. J. of Heat and Mass Transfer, 15, pp. 301-314 (1972). DOI: 10.1016/0017-9310(72)90076-2 17. Henkes, R.A.W.M., Van Der Vlugt, F.F., and Hoogendoorn, C.J. Natural-convection ow in a square cavity calculated with low-Reynolds-number turbulence models", Int. J. of Heat and Mass Transfer, 34 pp. 377-388 (1991). DOI: 10.1016/0017-9310(91)90258-G 18. Barakos, G. and Mitsoulis, E. Natural convection ow in a square cavity revisited: laminar and turbulent models with wall functions", Int. J. for Numerical Methods in Fluids, 18, pp. 695-719 (1994). DOI: 10.1002/d.1650180705 19. Chen, Q. Comparison of di_erent k " models for indoor air ow computations", Numer. Heat Transf. Part B Fundamental, 28, pp. 353-369 (1995). DOI: 10.1080/10407799508928838 20. Trias, F.X., Gorobets, A., Soria, M., and Oliva, A. Direct numerical simulation of a di_erentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 1011 - Part I: Numerical methods and time-averaged ow", Int. J. of Heat and Mass Transfer, 53, pp. 665-673 (2010). DOI: 10.1016/j.ijheatmasstransfer.2009.10.026 21. Trias, F.X., Gorobets, A., Soria, M., and Oliva, A. Direct numerical simulation of a di_erentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 1011 - Part II: Heat transfer and ow dynamics", Int. J. of Heat and Mass Transfer, 53, pp. 674-683 (2010). DOI: 10.1016/j.ijheatmasstransfer.2009.10.027 22. Hsieh, K.J. and Lien, F.S. Numerical modeling of buoyancy-driven turbulent ows in enclosures", Int. J. of Heat and Fluid Flow, 25, pp. 659-670 (2004). DOI: 10.1016/j.ijheatuidow.2003.11.023 23. Hanjali_c, K. and Vasi_c, S. Computation of turbulent natural convection in rectangular enclosures with an algebraic ux model", Int. J. of Heat and Mass Transfer, 36, pp. 3603-3624 (1993). DOI: 10.1016/0017- 9310(93)90178-9 24. Dol, H.S., Hanjali_c, K., and Kenjere_s, S. A comparative assessment of the second-moment di_erential and algebraic models in turbulent natural convection", Int. J. of Heat and Fluid Flow, 18, pp. 4-14 (1997). DOI: 10.1016/S0142-727X(96)00149-X 25. Craft, T.J., Gant, S.E., Gerasimov, A.V., Iacovides, H., and Launder, B.E. Development and application of wall-function treatments for turbulent forced and mixed convection ows", Fluid Dynamics Research, 38, pp. 127-144 (2006). DOI: 10.1016/j.uiddyn.2004.11.002 26. Ba_ri, A., Zarco-pernia, E., and de Mar_a J.M.G. A review on natural convection in enclosures for engineering applications, The particular case of the parallelogrammic diode cavity", Applied Thermal Engineering, 63, pp. 304-322 (2014). DOI: 10.1016/j.applthermaleng.2013.10.065 27. Ho, C.J., Chang, W.S., and Wang, C.C. Natural convection between two horizontal cylinders in an adiabatic circular enclosure", Transactions of ASME J. of Heat Transfer, 115. pp. 158-165 (1993). DOI: 10.1115/1.2910642 28. Ho, C.J., Cheng, Y.T., and Wang, C.C. Natural convection between two horizontal cylinders inside a circular enclosure subjected to external convection", Int. J. of Heat and Fluid Flow, 15, pp. 299-306 (1994). DOI: 10.1016/0142-727X(94)90015-9 29. Ha, M.Y, Jung, M.J., and Kim, Y.S. Numerical study on transient heat transfer and uid ow of natural convection in an enclosure with a heat generating conducting body, Numerical Heat Transfer, Part A, 35, pp. 415-433 (1999). 30. Ha, M.Y., Kim, I.K., Yoon, H.S., Yoon, K.S., Lee, J.R., Balachandar, S., and Chun, H.H. Two- Dimensional and unsteady natural convection in a horizontal enclosure with a square body", Numerical Heat Transfer, Part A: Applications, 41, pp. 183-210 (2002). DOI: 10.1080/104077802317221393 31. Oztop, H., Dagtekin, I., and Bahloul, A. Comparison of position of a heated thin plate located in a cavity for natural convection", Int. Commun. Heat Mass Transfer, 31, pp. 121-132 (2004). DOI: 10.1016/S0735- 1933(03)00207-0 32. Oztop, H. and Bilgen, E. Natural convection in di_erentially heated and partially divided square cavities with internal heat generation", Int. J. of Heat and Fluid Flow, 27, pp. 466-475 (2006). DOI: 10.1016/j.ijheatuidow.2005.11.003 33. Kandaswamy, P., Lee, J., Abdul Hakeem, A.K., and Saravanan, S. E_ect of ba_e-cavity ratios on buoyancy convection in a cavity with mutually orthogonal heated ba_es", Int. J. of Heat and Mass Transf., 51, pp. 1830-1837 (2008). DOI: 10.1016/j.ijheatmasstransfer.2007.06.039 34. Hakeem, A.K.A., Saravanan, S., and Kandaswamy, P. Buoyancy convection in a square cavity with mutually orthogonal heat generating ba_es", Int. J. of Heat and Fluid Flow., 29, pp. 1164-1173 (2008). DOI: 10.1016/j.ijheatuidow.2008.01.015 35. Lee, J.M., Ha, M.Y., and Yoon, H.S. Natural convection in a square enclosure with a circular cylinder at di_erent horizontal and diagonal locations", Int. J. of Heat and Mass Transfer, 53, pp. 5905-5919 (2010). DOI: 10.1016/j.ijheatmasstransfer.2010.07.043 36. Hussain, S.H. and Hussein, A.K. Numerical investigation of natural convection phenomena in a uniformly heated circular cylinder immersed in square enclosure _lled with air at di_erent vertical locations", Int. Communications in Heat and Mass Transfer, 37, pp. 1115-1126 (2010). DOI: 10.1016/j.icheatmasstransfer.2010.05.016 37. Bararnia, H., Soleimani, S., and Ganji, D.D. Lattice Boltzmann simulation of natural convection around a horizontal elliptic cylinder inside a square enclosure", Int. Communications of Heat and Mass Transfer, 38, pp. 1436-1442 (2011). DOI: 10.1016/j.icheatmasstransfer.2011.07.012 38. Park, Y.G., Ha, M.Y., Choi, C., and Park, J. Natural convection in a square enclosure with two inner circular cylinders positioned at di_erent vertical locations", Int. J. of Heat and Mass Transfer, 77, pp. 501-518 (2014). DOI: 10.1016/j.ijheatmasstransfer.2014.05.041 39. Garoosi, F., Bagheri, G., and Talebi, F. Numerical simulation of natural convection of nanouids in a square cavity with several pairs of heaters and coolers (HACs) inside", Int. J. of Heat and Mass Transfer, 67, pp. 362-376 (2013). DOI: 10.1016/j.ijheatmas stransfer. 2013.08.034 40. Garoosi, F. and Hoseininejad, F. Numerical study of natural and mixed convection heat transfer between di_erentially heated cylinders in an adiabatic enclosure _lled with nanouid", J. of Molecular Liquids, 215, pp. 1-17 (2016). DOI: 10.1016/j.molliq.2015.12.016 41. Patankar, S. and Spalding, D. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic ows", Int. J. of Heat and Mass Transfer, 15, pp. 1787-1806 (1972). DOI: 10.1016/0017-9310(72)90054-3 42. Stone, H.L. Iterative solution of implicit approximations of multidimensional partial di_erential equations", SIAM J. Numerical Analysis, 5(3), pp. 530-558 (1968).