Pulse extraction of pulse-like ground motions based on particle swarm optimization algorithm

Document Type : Article

Authors

1 Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran.

2 Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran

Abstract

Considering the devastating effects of near-fault earthquakes, seismologists and engineers have, qualitatively and quantitatively, represented the strong velocity pulse of near-fault ground motions using models including physical parameters associated with the wave propagation process. In some mathematical models, the derivation of physical parameters is required to fit time history and response spectrum of the simulated record to the actual record through trial and error process, which limits the scope of these models. In the current study, the particle swarm optimization (PSO) algorithm is replaced with the trial and error procedure. In this way, an automatic and quantitative process with the minimal judgment of the analyst is prepared to extract a wide range of pulselike records. Then, the proposed approach is applied to simulate and represent mathematically a set of 91 pulselike records from the Next Generation Attenuation (NGA) project ground motion library. The obtained results show that a velocity pulse of each pulselike record could be extracted using the proposed approach, and it can therefore be considered as a powerful tool in pulse parametric studies and the relationship between velocity pulse and structure’s response.

Keywords

Main Subjects


1. Bertero, V.V., Mahin, S.A., and Herrera, R.A.  Aseismic design implications of near-fault San Fernando  earthquake records", Earthquake Engineering  and Structural Dynamics, 6(1), pp. 31{42 (1978).  2. Anderson, J.C. and Bertero, V.V. Uncertainties in  establishing design earthquakes", Journal of Structural  Engineering, 113(8), pp. 1709{1724 (1987).  3. Hall, J.F., Heaton, T.H., Halling, M.W., and Wald,  D.J. Near-source ground motion and its e_ects on  exible buildings", Earthquake Spectra, 11(4), pp. 569{  605 (1995).  4. Iwan, W.D. Drift spectrum: Measure of demand for  earthquake ground motions", Journal of Structural  Engineering, 123(4), pp. 397{404 (1997).  5. Alavi, B. and Krawinkler, H., E_ects of Near-Fault  Ground Motions on Frame Structures, John A. Blume  Earthquake Engineering Center Stanford (2001).  6. Menun, C. and Fu, Q. An analytical model for  near-fault ground motions and the response of SDOF  systems", Proceedings of 7th US National Conference  on Earthquake Engineering, Boston, Massachusetts,  pp. 21{25 (2002).  7. Makris, N. and Black, C.J. Dimensional Analysis of  Inelastic Structures Subjected to Near Fault Ground  Motions, Earthquake Engineering Research Center,  University of California (2003).  8. Akkar, S., Yazgan, U., and Gulkan, P. Drift estimates  in frame buildings subjected to near-fault ground  motions", Journal of Structural Engineering, 131(7),  pp. 1014{1024 (2005).  9. Luco, N. and Cornell, C.A. Structure-speci_c scalar  intensity measures for near-source and ordinary earthquake  ground motions", Earthquake Spectra, 23(2),  pp. 357{392 (2007).  10. Xie, L., Xu, L., and Adrian, R.M. Representation  of near-fault pulse-type ground motions", Earthquake  Engineering and Engineering Vibration, 4(2), pp. 191{  199 (2005).  11. Zhai, C., Li, S., Xie, L., and Sun, Y. Study on inelastic  displacement ratio spectra for near-fault pulsetype  ground motions", Earthquake Engineering and  Engineering Vibration, 6(4), pp. 351{355 (2007).  12. Ribakov, Y. Reduction of structural response to nearfault  earthquakes by seismic isolation columns and  variable friction dampers", Earthquake Engineering  and Engineering Vibration, 9(1), pp. 113{122 (2010).  13. Yaghmaei-Sabegh, S. Detection of pulse-like ground  motions based on continues wavelet transform", Journal  of Seismology, 14(4), pp. 715{726 (2010).  14. Alonso-Rodr__guez, A. and Miranda, E. Assessment of  building behavior under near-fault pulse-like ground  motions through simpli_ed models", Soil Dynamics  and Earthquake Engineering, 79, pp. 47{58 (2015).  156 S.R. Hoseini Vaez and Z. Minaei/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 134{158  15. Zhao, W.S. and Chen, W.Z. E_ect of near-fault  ground motions with long-period pulses on the tunnel",  Journal of Vibroengineering, 17(2), pp. 841{858  (2015).  16. Alhan, C. and Oncu-Davas, S. Performance limits  of seismically isolated buildings under near-_eld  earthquakes", Engineering Structures, 116, pp. 83{94  (2016).  17. Alhan, C., Gazi, H., and Kurtulu_s, H. Signi_cance  of sti_ening of high damping rubber bearings on  the response of base-isolated buildings under nearfault  earthquakes", Mechanical Systems and Signal  Processing, 79, pp. 297{313 (2016).  18. Chen, Z., Chen, W., Li, Y., and Yuan, Y. Shaking  table test of a multi-story subway station under pulselike  ground motions", Soil Dynamics and Earthquake  Engineering, 82, pp. 111{122 (2016).  19. Yazdani, Y. and Alembagheri, M. E_ects of base and  lift joints on the dynamic response of concrete gravity  dams to pulse-like excitations", Journal of Earthquake  Engineering, 21(5), pp. 840{860 (2017).  20. Zhao, G.C., Xu, L., and Xie, L. Study on lowfrequency  characterizations of pulse-type ground motions  through multi-resolution analysis", Journal of  Earthquake Engineering, 20(6), pp. 1011{1033 (2016).  21. Baker, J.W. Quantitative classi_cation of near-fault  ground motions using wavelet analysis", Bulletin of the  Seismological Society of America, 97(5), pp. 1486{1501  (2007).  22. Mavroeidis, G.P. and Papageorgiou, A.S. A mathematical  representation of near-fault ground motions",  Bulletin of the Seismological Society of America, 93(3),  pp. 1099{1131 (2003).  23. Hoseini-Vaez, S.R., Sharbatdar, M.K., Ghodrati-  Amiri, G., Naderpour, H., and Kheyroddin, A. Dominant  pulse simulation of near fault ground motions",  Earthquake Engineering and Engineering Vibration,  12(2), pp. 267{278 (2013).  24. Mimoglou, P., Psycharis, I.N., and Taampas, I.M.  Determination of the parameters of the directivity  pulse embedded in near-fault ground motions and  its e_ect on structural response", In Computational  Methods in Earthquake Engineering, pp. 27{48 (2017).  25. Kaveh, A., Hoseini Vaez, S.R., and Hosseini, P. MATLAB  code for an enhanced vibrating particles system  algorithm", International Journal of Optimization in  Civil Engineering, 8(3), pp. 401{414 (2018).  26. Kaveh, A., Hoseini Vaez, S.R., and Hosseini, P.  Modi_ed dolphin monitoring operator for weight optimization  of frame structures", Periodica Polytechnica  Civil Engineering, 61(4), pp. 770{779 (2017).  27. Hoseini Vaez, S.R. and Sarvdalir, S. Reliabilitybased  optimization of one-bay 2-D steel frame", KSCE  Journal of Civil Engineering, 22(7), pp. 2433{2440  (2018).  28. Kaveh, A., Hoseini Vaez, S.R., and Hosseini, P.  Enhanced vibrating particles system algorithm for  damage identi_cation of truss structures", Scientia  Iranica, 26(1), pp. 246{256 (2019).  29. Hoseini Vaez, S.R. and Fallah, N. Damage detection  of thin plates using GA-PSO algorithm based on modal  data", Arabian Journal for Science and Engineering,  42(3), pp. 1251{1263 (2017).  30. Kaveh, A., Hoseini Vaez, S.R., Hosseini, P., and Fallah,  N. Detection of damage in truss structures using  simpli_ed dolphin echolocation algorithm based on  modal data", Smart Structures and Systems, 18(5),  pp. 983{1004 (2016).  31. Shi, Y. and Eberhart, R. A modi_ed particle swarm  optimizer", Proceedings of the 1998 IEEE International  Conference on Evolutionary Computation, pp.  69{73 (1998).  32. Eberhart, R. and Kennedy, J. A new optimizer using  particle swarm theory", Proceedings of the Sixth International  Symposium on Micro Machine and Human  Science Nagoya, Japan, pp. 39{43 (1995).  33. Kennedy, J. and Eberhart, R. Particle swarm optimization",  Proceedings of the IEEE International  Conference on Neural Networks Piscataway, pp. 1942{  1948 (1995).  34. Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. Nonlinear  programming: Theory and algorithms", John  Wiley & Sons, Canada, USA (2013).  35. Coello, C.A.C. Theoretical and numerical constrainthandling  techniques used with evolutionary algorithms:  A survey of the state of the art", Computer  Methods in Applied Mechanics and Engineering,  191(11), pp. 1245{1287 (2002).  36. McFadden, P.D., Cook, J.G., and Forster, L.M. Decomposition  of gear vibration signals by the generalised  S transform", Mechanical Systems and Signal Processing,  13(5), pp. 691{707 (1999).  37. Trifunac, M.D. Energy of strong motion at earthquake  source", Soil Dynamics and Earthquake Engineering,  28(1), pp. 1{6 (2008).  38. Todorovska, M.I., Meidani, H., and Trifunac, M.D.  Wavelet approximation of earthquake strong ground  motion-goodness of _t for a database in terms of  predicting nonlinear structural response", Soil Dynamics  and Earthquake Engineering, 29(4), pp. 742{751  (2009).