Shear strength prediction of RC beams using adaptive neuro-fuzzy inference system

Document Type : Article


Faculty of Civil Engineering, Semnan University, Semnan, Iran


In complex engineering problems, there are some inexact conceptions, or a lot of parameters which must be considered. Soft computing is an approach that successfully applied to solve such problems. Determination of fuzzy rules for many problems has not been quite possible by an expert human. In this case, a neuro-fuzzy system which is the combination of neural network (for its ability to learn by datasets) and fuzzy system (for solving the drawback of the neural network) can be enhancing the performance of the system with several parameters or complex conditions. This paper shows the capability of a neuro-fuzzy system namely ANFIS to predicting the shear strength of reinforced concrete beams with steel stirrups. For this propose, the collection of laboratory results which was published in literatures used to train and finally test the proposed system. For this purpose, the sub-clustering approach (SC) applied for generating ANFIS. The results indicated that the considered neuro-fuzzy system was able to predict the shear strength of the RC beams which have been reinforced with steel stirrups.


Main Subjects

1. American Concrete Institute,Building Code Requirements  for Structural Concrete (ACI 318-14): Commentary  on Building Code Requirements for Structural  Concrete (ACI 318R-14): An ACI Report, American  Concrete Institute, ACI (2014).  2. Li, W. and Leung, C.K.Y. Shear span-depth ratio  e_ect on behavior of RC beam shear strengthened with  full-wrapping FRP strip", Journal of Composites for  Construction, 20(3), 04015067 (2016).  3. Taleb, S.A. and Salem, A.S. Bending and shear behavior  of a composite beam strengthened and doublecon  _ned with FRP-Jacket", Procedia Engineering,  114, pp. 165{172 (2015).  4. ACI Committee 440, Guide for the Design and Construction  of structural concrete reinforced with Fiber  Reinforced Polymer (FRP) bars (ACI 440.1 R-15),  Farmington Hills, MI: American Concrete Institute  (2015).  5. "CIDAR, Design guideline for RC structures  retro_tted with FRP and metal plates: beams  and slab", Submitted To Standards Australia, The  University of Adelaide (2006).  6. Zadeh, L.A. Fuzzy logic, neural networks, and soft  computing", Communications of the ACM, 37(3), pp.  77{84 (1994).  7. Wilamowski, B.M. Advantages and problems of soft  computing", In Industrial Informatics (INDIN), 9th  IEEE International Conference on, pp. 5{11 (2011).  8. Raza, M.Q. and Baharudin, Z. A review on short  term load forecasting using hybrid neural network  techniques", In Power and Energy (PECon), IEEE  International Conference on, pp. 846{851 (2012).  9. Mirrashid, M. Earthquake magnitude prediction by  adaptive neuro-fuzzy inference system (ANFIS) based  on fuzzy C-means algorithm", Natural Hazards, 74(3),  pp. 1577{1593 (2014).  10. Mirrashid, M., Givehchi, M., Miri, M., and Madandoust,  R. Performance investigation of neuro-fuzzy  system for earthquake prediction", Asian Journal of  Civil Engineering (BHRC), 17(2), pp. 213{223 (2016).  11. Shioya, T. and Kawasaki, H. Size e_ect on shear  strength of reinforced concrete beam", In Finite Element  Analysis of Reinforced Concrete Structures, pp.  255{264 (1985).  12. Mungwa, M.S., Jullien, J.-F., Foudjet, A., and  Hentges, G. Experimental study of a composite  wood-concrete beam with the INSA-Hilti new exible  shear connector", Construction and Building Materials,  13(7), pp. 371{382 (1999).  13. Adhikary, B.B., Mutsuyoshi, H., and Sano, M. Shear  strengthening of reinforced concrete beams using steel  plates bonded on beam web: experiments and analysis",  Construction and Building Materials, 14(5), pp.  237{244 (2000).  14. Lam, D. and El-Lobody, E. Finite element modelling  of headed stud shear connectors in steel-concrete  composite beam", Proceedings of the International  Conference on Structural Engineering, Mechanics and  Computation, Elsevier Science, South Africa, 1, pp.  401{408 (2001).  15. Maru, S., Sharma, R., and Nagpal, A. E_ect of  creep and shrinkage in reinforced concrete frame-shear  wall system with high beam sti_ness", The Structural  Design of Tall and Special Buildings, 12(2), pp. 93{108  (2003).  16. Park, W.-S., Yun, H.-D., Hwang, S.-K., Han, B.-  C., and Yang, I.S. Shear strength of the connection  between a steel coupling beam and a reinforced concrete  shear wall in a hybrid wall system", Journal  of Constructional Steel Research, 61(7), pp. 912{941  (2005).  17. Eun, H.C., Lee, Y.H., Chung, H.S., and Yang, K.H.  On the shear strength of reinforced concrete deep  beam with web opening", The Structural Design of  Tall and Special Buildings, 15(4), pp. 445{466 (2006).  18. Park, W.-S. and Yun, H.-D. The bearing strength of  steel coupling beam-reinforced concrete shear wall connections",  Nuclear Engineering and Design, 236(1),  pp. 77{93 (2006).  19. Park, W.-S. and Yun, H.-D. Bearing strength of  steel coupling beam connections embedded reinforced  concrete shear walls", Engineering Structures, 28(9),  pp. 1319{1334 (2006).  20. Kim, J. and LaFave, J.M. Key inuence parameters  for the joint shear behaviour of reinforced concrete  (RC) beam-column connections", Engineering Structures,  29(10), pp. 2523{2539 (2007).  H. Naderpour and M. Mirrashid/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 657{670 667  21. Ranzi, G. and Zona, A. A steel-concrete composite  beam model with partial interaction including the  shear deformability of the steel component", Engineering  Structures, 29(11), pp. 3026{3041 (2007).  22. Gara, F., Leoni, G., and Dezi, L. A beam _nite element  including shear lag e_ect for the time-dependent  analysis of steel-concrete composite decks", Engineering  Structures, 31(8), pp. 1888{1902 (2009).  23. Jurkiewiez, B. Static and cyclic behaviour of a steelconcrete  composite beam with horizontal shear connections",  Journal of Constructional Steel Research,  65(12), pp. 2207{2216 (2009).  24. Buyukkaragoz, A. and Arslan, A. The e_ect of steel  plates with shear studs for weak column-strong beam  connections in the reinforced concrete structures under  earthquake e_ect", Strain, 47(s2), pp. 393{411 (2011).  25. Muhsen, B.A. and Umemura, H. New model for  estimation of shear strength of reinforced concrete  interior beam-column joints", Procedia Engineering,  14 pp. 2151{2159 (2011).  26. Ramadass, S. and Thomas, J. Flexure-shear analysis  of concrete beam reinforced with GFRP bars", In  Advances in FRP Composites in Civil Engineering,  Springer, pp. 321{324 (2011).  27. Doh, J.H., Guan, H., and Kim, T. Parametric and  comparative study of spandrel beam e_ect on the  punching shear strength of reinforced concrete at  plates", The Structural Design of Tall and Special  Buildings, 21(8), pp. 605{620 (2012).  28. Setiawan, A. and Saptono, K. Shear capacity of  reinforced concrete beam with di_erent cross section  types of lateral reinforcement on minimum ratio",  Procedia Engineering, 50, pp. 576{585 (2012).  29. Shi, X.-q., Zhang, Z.-q., and Li, Z.-y. Experimental  study of the shear capacity of glass _ber reinforced  polymer reinforced concrete beam with circular cross  section", Journal of Shanghai Jiaotong University  (Science), 17, pp. 408{414 (2012).  30. Gunasekaran, K., Annadurai, R., and Kumar, P.  Study on reinforced lightweight coconut shell concrete  beam behavior under shear", Materials and Design,  50, pp. 293{301 (2013).  31. Houachine, H., Sereir, Z., Kerboua, B., and Hadjazi, K.  Combined cohesive-bridging zone model for prediction  of the debonding between the FRP and concrete  beam interface with e_ect of adherend shear deformations",  Composites Part B: Engineering, 45(1), pp.  871{880 (2013).  32. Sung, Y., Lin, T., Hsiao, C., and Lai, M. Pushover  analysis of reinforced concrete frames considering shear  failure at beam-column joints", Earthquake Engineering  and Engineering Vibration, 12(3), pp. 373{383  (2013).  33. Bui, N., Ngo, M., Nikolic, M., Brancherie, D., and  Ibrahimbegovic, A. Enriched Timoshenko beam _nite  element for modeling bending and shear failure of  reinforced concrete frames", Computers & Structures,  143, pp. 9{18 (2014).  34. Long, X., Bao, J., Tan, K., and Lee, C. Numerical  simulation of reinforced concrete beam/column failure  considering normal-shear stress interaction", Engineering  Structures, 74, pp. 32{43 (2014).  35. Manos, G., Theofanous, M., and Katakalos, K. Numerical  simulation of the shear behaviour of reinforced  concrete rectangular beam specimens with or without  FRP-strip shear reinforcement", Advances in Engineering  Software, 67, pp. 47{56 (2014).  36. Yu, F., Yao, D., Jia, J., and Wu, F. Shear behavior of  novel prestressed concrete beam subjected to monotonic  and cyclic loading", Transactions of Tianjin  University, 20, pp. 257{265 (2014).  37. Alam, M.A., Hassan, A., and Muda, Z.C. Development  of kenaf _bre reinforced polymer laminate  for shear strengthening of reinforced concrete beam",  Materials and Structures, 49(3), pp. 795{811 (2016).  38. Bompa, D. and Elghazouli, A. Ultimate shear behaviour  of hybrid reinforced concrete beam-to-steel  column assemblages", Engineering Structures, 101,  pp. 318{336 (2015).  39. Shahbazpanahi, S., Ali, A.A.A., Kamgar, A., and  Farzadnia, N. Fracture mechanic modeling of _ber  reinforced polymer shear-strengthened reinforced concrete  beam", Composites Part B: Engineering, 68, pp.  113{120 (2015).  40. Campione, G., Colajanni, P., and Monaco, A. Analytical  evaluation of steel-concrete composite trussed  beam shear capacity", Materials and Structures, 49(8),  pp. 3159{3176 (2016).  41. Lu, X., Wang, D., and Zhao, B. Experimental study  on seismic performance of precast concrete shear wall  with joint connecting beam under cyclic loadings",  In Experimental Research in Earthquake Engineering,  Springer, pp. 373{386 (2015).  42. Zhang, T., Visintin, P., and Oehlers, D.J. Shear  strength of RC beams with steel stirrups", Journal of  Structural Engineering, 142(2), p. 04015135 (2016).  43. Adhikary, B.B. and Mutsuyoshi, H. Arti_cial neural  networks for the prediction of shear capacity of steel  plate strengthened RC beams" , Construction and  Building Materials, 18(6), pp. 409{417 (2004).  44. Adhikary, B.B. and Mutsuyoshi, H. Prediction of  shear strength of steel _ber RC beams using neural networks",  Construction and Building Materials, 20(9),  pp. 801{811 (2006).  45. Abdalla, J.A., Elsanosi, A., and Abdelwahab, A.  Modeling and simulation of shear resistance of R/C  beams using arti_cial neural network", Journal of the  Franklin Institute, 344(5), pp. 741{756 (2007).  668 H. Naderpour and M. Mirrashid/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 657{670  46. Zsutty, T. Shear strength prediction for separate  catagories of simple beam tests", In ACI Journal  Proceedings, 68(2), pp. 138{143 (1971).  47. Nehdi, M., El Chabib, H., and Sa_d, A.A. Proposed  shear design equations for FRP-reinforced concrete  beams based on genetic algorithms approach", Journal  of Materials in Civil Engineering, 19(12), pp. 1033{  1042 (2007).  48. Ahn, N., Jang, H., and Park, D.K. Presumption  of shear strength of steel _ber reinforced concrete  beam using arti_cial neural network model", Journal  of Applied Polymer Science, 103(4), pp. 2351{2358  (2007).  49. Perera, R., Barch__n, M., Arteaga, A., and De Diego,  A. Prediction of the ultimate strength of reinforced  concrete beams FRP-strengthened in shear using neural  networks", Composites Part B: Engineering, 41(4),  pp. 287{298 (2010).  50. Tanarslan, H. Predicting the capacity of RC beams  strengthened in shear with side-bonded FRP reinforcements  using arti_cial neural networks", Composite  Interfaces, 18(7), pp. 587{614 (2011).  51. Tanarslan, H., Secer, M., and Kumanlioglu, A. An  approach for estimating the capacity of RC beams  strengthened in shear with FRP reinforcements using  arti_cial neural networks", Construction and Building  Materials, 30, pp. 556{568 (2012).  52. Lee, S. and Lee, C. Prediction of shear strength  of FRP-reinforced concrete exural members without  stirrups using arti_cial neural networks", Engineering  Structures, 61, pp. 99{112 (2014).  53. Nasrollahzadeh, K. and Basiri, M.M. Prediction of  shear strength of FRP reinforced concrete beams using  fuzzy inference system", Expert Systems with Applications,  41(4), pp. 1006{1020 (2014).  54. Perera, R., Tarazona, D., Ruiz, A., and Mart__n,  A. Application of arti_cial intelligence techniques to  predict the performance of RC beams shear strengthened  with NSM FRP rods. Formulation of design  equations", Composites Part B: Engineering, 66, pp.  162{173 (2014).  55. Tanarslan, H., Kumanlioglu, A., and Sakar, G. An anticipated  shear design method for reinforced concrete  beams strengthened with anchoraged carbon _berreinforced  polymer by using neural network", The  Structural Design of Tall and Special Buildings, 24(1),  pp. 19{39 (2015).  56. Naderpour, H., Kheyroddin, A., and Amiri, G.G.  Prediction of FRP-con_ned compressive strength of  concrete using arti_cial neural networks", Composite  Structures, 92(12), pp. 2817{2829 (2010).  57. Naderpour, H., Kheyroddin, A., Amiri, G.G., and  Hoseini Vaez, S.R. Estimating the behavior of FRPstrengthened  RC structural members using arti_cial  neural networks", Procedia Engineering, 14, pp. 3183{  3190 (2011).  58. Jafari, M., Mirrashid, M., and Vahidnia, A. Prediction  of chloride penetration in the concrete containing  magnetite aggregates by adaptive neural fuzzy inference  system (ANFIS)", 7th Internatinal Symposium  on Advances in Science and Technology (5th sastech),  Bandare Abbas, Iran (2013).  59. Mirrashid, M., Jafari, M., Akhlaghi, A., and Vahidnia,  A. Prediction of compressive strength of concrete  containing magnetite aggregates by Adaptive Neural  Fuzzy Inference System (ANFIS)", 4th Internatinal  Conference on Concrete & Development (ICCD),  Tehran, Iran (2013).  60. Mirrashid, M. and Bigdeli, S. Genetic algorithm  for prediction the compressive strength of mortar  containing wollastonite", 1st National Congress on  Counstruction Engineering and Projects Assessment,  Gorgan, Iran (2014).  61. Naderpour, H. and Mirrashid, M. Application of soft  computing to reinforced concrete beams strengthened  with _bre reinforced polymers: A state-of-the-art  review", in Computational Techniques for Civil and  Structural Engineering, 38, Chapter 13, Saxe-Coburg  Publications, Stirlingshire, UK, pp. 305{323 (2015).  62. Ahmadi, M., Naderpour, H., and Kheyroddin, A.  ANN model for predicting the compressive strength of  circular steel-con_ned concrete", International Journal  of Civil Engineering, 15(2), pp. 213{221 (2017).  63. Ilkhani, M., Moradi, E., and Lavasani, M. Calculation  of torsion capacity of the reinforced concrete beams  using arti_cial neural network", Soft Computing in  Civil Engineering, 1(2), pp. 8{18 (2017).  64. Mirrashid, M. Comparison study of soft computing  approaches for estimation of the non-ductile RC joint  shear strength", Soft Computing in Civil Engineering,  1(1), pp. 12{28 (2017).  65. Naderpour, H. and Alavi, S. A proposed model to  estimate shear contribution of FRP in strengthened  RC beams in terms of adaptive neuro-fuzzy inference  system", Composite Structures, 170, pp. 215{227  (2017).  66. Naderpour, H., Khatami, S., and Barros, R. Prediction  of critical distance between two MDOF systems  subjected to seismic excitation in terms of arti_cial  neural networks", Periodica Polytechnica, Civil Engineering,  61(3), p. 516 (2017).  67. Naderpour, H. and Mirrashid, M. Compressive  strength of mortars admixed with wollastonite and  microsilica", In Materials Science Forum, 890, pp.  415{418 (2017).  68. Naderpour, H. and Mirrashid, M. An innovative  approach for compressive strength estimation of mortars  having calcium inosilicate minerals", Journal of  Building Engineering, 19, pp. 205{215 (2018).  H. Naderpour and M. Mirrashid/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 657{670 669  69. Naderpour, H., Ra_ean, A., and Fakharian, P.  Compressive strength prediction of environmentally  friendly concrete using arti_cial neural networks",  Journal of Building Engineering, 16, pp. 213{219  (2018).  70. Naderpour, H., Vahdani, R., and Mirrashid, M. Soft  computing research in structural control by mass  damper (A review paper)", 4th International Conference  on Structural Engineering, Tehran, Iran (2018).  71. Penelis, G.G. and Penelis, G.G. Concrete Buildings in  Seismic Regions, CRC Press (2014).  72. Broo, H. Shear and torsion in concrete structures",  Gothenburg: Chalmers University of Technology  (2008).  73. Jang, J.-S.R. ANFIS: adaptive network based fuzzy  inference systems", IEEE Trans Syst Man Cybern,  23(3), pp. 665{685 (1993).  74. Adeli, H. and Panakkat, A. A probabilistic neural  network for earthquake magnitude prediction", Neural  Networks, 22(7), pp. 1018{1024 (2009).  75. Chiu, S.L. Fuzzy model identi_cation based on cluster  estimation", Journal of Intelligent and Fuzzy Systems,  2(3), pp. 267{278 (1994).  76. Clark, A.P. Diagonal tension in reinforced concrete  beams", In ACI Journal Proceedings, 48(10), pp. 145{  156 (1951).  77. Bresler, B. and Scordelis, A.C. Shear strength of reinforced  concrete beams", In ACI Journal Proceedings,  (1963).  78. Bresler, B. and Scordelis, A.C. Shear Strength of  Reinforced Concrete Beams: Series II", Institute of  Engineering Research, University of California, Berkeley,  CA 64{2 (1964).  79. Bresler, B. and Scordelis, A.C. Shear Strength of  Reinforced Concrete Beams: Series III", Institute of  Engineering Research, University of California, Berkeley,  CA 65{10 (1966).  80. Krefeld, W.J. and Thurston, C.W. Studies of the  shear and diagonal tension strength of simply supported  reinforced concrete beams", In ACI Journal  Proceedings, 63(4), pp. 451{476 (1966) .  81. Placas, A. and Regan, P.E. Shear failure of reinforced  concrete beams", In ACI Journal Proceedings, 68(10),  pp. 763{773 (1971).  82. Swamy, R. and Andriopoulos, A. Contribution of  aggregate interlock and dowel forces to the shear resistance  of reinforced beams with web reinforcement",  ACI Special Publication, 42, pp. 129{168 (1974).  83. Mattock, A.H. and Wang, Z. Shear strength of  reinforced concrete members subject to high axial compressive  stress", In ACI Journal Proceedings, 81(3),  pp. 287{298 (1984).  84. Mphonde, A.G. and Frantz, G.C. Shear tests of highand  low-strength concrete beams with stirrups", ACI  Special Publication, 87, pp. 179{196 (1985).  85. Elzanaty, A.H., Nilson, A.H., and Slate, F.O. Shear  capacity of reinforced concrete beams using highstrength  concrete", In ACI Journal Proceedings, 83(2),  pp. 290{296 (1986).  86. Anderson, N.S. and Ramirez, J.A. Detailing of stirrup  reinforcement", Structural Journal, 86(5), pp. 507{515  (1989).  87. Sarsam, K.F. and Al-Musawi, J.M. Shear design of  high-and normal strength concrete beams with web  reinforcement", Structural Journal, 89(6), pp. 658{664  (1992).  88. Xie, Y., Ahmad, S.H., Yu, T., Hino, S., and Chung, W.  Shear ductility of reinforced concrete beams of normal  and high-strength concrete", Structural Journal,  91(2), pp. 140{149 (1994).  89. Yoon, Y.-S., Cook, W.D., and Mitchell, D. Minimum  shear reinforcement in normal, medium, and highstrength  concrete beams", ACI Structural Journal,  93(5), pp. 576{584 (1996).  90. Frosch, R.J. Behavior of large-scale reinforced concrete  beams with minimum shear reinforcement",  Structural Journal, 97(6), pp. 814{820 (2000).  91. Tompos, E.J. and Frosch, R.J. Inuence of beam size,  longitudinal reinforcement, and stirrup e_ectiveness  on concrete shear strength", ACI Structural Journal,  99(5), pp. 559{567 (2002).  92. Lee, J.-Y. and Hwang, H.-B. Maximum shear reinforcement  of reinforced concrete beams", ACI Structural  Journal, 107(5), pp. 580{588 (2010).  93. Lee, J.-Y., Choi, I.-J., and Kim, S.-W. Shear behavior  of reinforced concrete beams with high-strength stirrups",ACI Structural Journal, 108(5), pp. 620{629  (2011).