1. Amiri, S., Talebbeydokhti, N., and Baghlani, A. A two-dimensional well-balanced numerical model for shallow water equations", Sci. Iran., 20(1), pp. 97{107 (2013). 2. Mahdavi, A. and Talebbeydokhti, N. A hybrid solid boundary treatment algorithm for smoothed particle hydrodynamics", Sci. Iran., 22(4), pp. 1457{1469 (2015). 3. Asadollahfardi, G., Rezaee, M., and Mehrjardi, G.T. Simulation of unenhanced electrokinetic process for lead removal from kaolinite clay", Int. J. Civ. Eng., 14(4), pp. 263{270 (2016). 4. Alemi, M. and Maia, R. Numerical simulation of the ow and local scour process around single and complex bridge piers", Int. J. Civ. Eng., 16(5), pp. 475{487 (2018). 5. Hekmatzadeh, A.A., Papari, S., and Amiri, S.M. Investigation of energy dissipation on various con_gurations of stepped spillways considering several RANS turbulence models", Ijst-T. Civ. Eng., 42(2), pp. 97{ 109 (2018). 6. Mohamad, A.A. and Kuzmin, A. A critical evaluation of force term in lattice Boltzmann method, natural convection problem", Int. J. Heat Mass Transfer, 53(5), pp. 990{996 (2010). 7. Perumal, D.A. and Dass, A.K. A review on the development of lattice Boltzmann computation of macro uid ows and heat transfer", Alexandria Eng. J., 54(4), pp. 955{971 (2015). A.A. Hekmatzadeh et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 625{638 637 8. Yan, Z., Yang, X., Li, S., and Hilpert M. Tworelaxation- time lattice Boltzmann method and its application to advective-di_usive-reactive transport", Adv. Water Resour., 109, pp. 333{342 (2017). 9. Guo, Z. and Shu, C., Lattice Boltzmann Method and Its Applications in Engineering, World Scienti_c, Singapore (2013). 10. Gao, J., Xing, H., Tian, Z., Pearce, J.K., Sedek, M., and Golding, S.D. Reactive transport in porous media for CO2 sequestration: Pore scale modeling using the lattice Boltzmann method", Comput. Geosci., 98, pp. 9{20 (2017). 11. Yang, Y. and Wang, M. Pore-scale modeling of chloride ion di_usion in cement microstructures", Cement Concrete Comp., 85, pp. 92{104 (2018). 12. Shi, B. and Guo, Z. Lattice Boltzmann simulation of some nonlinear convection-di_usion equations", Comput. Math. Appl., 61(12), pp. 3443{3452 (2011). 13. Sharma, K.V., Straka, R., and Tavares, F.W. New cascaded thermal lattice Boltzmann method for simulations of advection-di_usion and convective heat transfer", Int. J. Therm. Sci., 118, pp. 259{277 (2017). 14. Wang, H., Cater, J., Liu, H., Ding, X., and Huang, W. A lattice Boltzmann model for solute transport in open channel ow", J. HYDROL., 556, pp. 419{426 (2018). 15. Mohamad, A.A., Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes, Springer Science & Business Media, Springer (2011). 16. Ibrahem, A.M., El-Amin, M.F., and Mohammadein, A.A. Lattice Boltzmann technique for heat transport phenomena coupled with melting process", Heat Mass Transfer, 53(1), pp. 213{221 (2017). 17. Xia, Y., Wu, J., and Zhang, Y. Lattice-Boltzmann simulation of two-dimensional super-di_usion", Eng. Appl. Comp. Fluid., 6(4), pp. 581{594 (2012). 18. Zhou, J.G. A lattice Boltzmann method for solute transport", Int. J. Numer. Methods Fluids, 61(8), pp. 848{863 (2009). 19. Yoshida, H. and Nagaoka, M. Lattice Boltzmann method for the convection-di_usion equation in curvilinear coordinate systems", J. Comput. Phys., 257, pp. 884{900 (2014). 20. Perko, J. and Patel, R.A. Single-relaxation-time lattice Boltzmann scheme for advection-di_usion problems with large di_usion-coe_cient heterogeneities and high-advection transport", Phys. Rev. E, 89(5), p. 053309 (2014). 21. Hosseini, R., Rashidi, S., and Esfahani, J.A. A lattice Boltzmann method to simulate combined radiationforce convection heat transfer mode", J. Braz. Soc. Mech. Sci. Eng., 2017, pp. 1{12 (2017). 22. Zheng, Y., Li, G., Guo, W., and Dong, C. Lattice Boltzmann simulation to laminar pulsating ow past a circular cylinder with constant temperature", Heat Mass Transfer, 2017, pp. 1{12 (2017). 23. Bin, D., Bao-Chang, S., and Guang-Chao, W. A new lattice Bhatnagar-Gross-Krook model for the convection-di_usion equation with a source term", Chin. Phys. Lett., 22(2), pp. 267{270 (2005). 24. Batot, G., Talon, L., Peysson, Y., Fleury, M., and Bauer, D. Analytical and numerical investigation of the advective and dispersive transport in Herschel- Bulkley uids by means of a lattice-Boltzmann tworelaxation- time scheme", Chem. Eng. Sci., 141, pp. 271{281 (2016). 25. Huang, R. and Wu, H. A modi_ed multiplerelaxation- time lattice Boltzmann model for convection-di_usion equation", J. Comput. Phys., 274, pp. 50{63 (2014). 26. Li, L., Mei, R., and Klausner, J.F. Lattice Boltzmann models for the convection-di_usion equation: D2Q5 vs D2Q9", Int. J. Heat Mass Transfer, 108, pp. 41{62 (2017). 27. Chai, Z. and Zhao, T. Nonequilibrium scheme for computing the ux of the convection-di_usion equation in the framework of the lattice Boltzmann method", Phys. Rev. E, 90(1), p. 013305 (2014). 28. Liu, Q., He, Y.L., Li, Q., and Tao, W.Q. A multiplerelaxation- time lattice Boltzmann model for convection heat transfer in porous media", Int. J. Heat Mass Transfer, 73, pp. 761{775 (2014). 29. Chopard, B., Falcone, J., and Latt, J. The lattice Boltzmann advection-di_usion model revisited", Eur. Phys. J. Special Topics, 171(1), pp. 245{249 (2009). 30. Li, Q., Chai, Z., and Shi, B. Lattice Boltzmann model for a class of convection-di_usion equations with variable coe_cients", Comput. Math. Appl., 70(4), pp. 548{561 (2015). 31. Hekmatzadeh, A.A., Karimi-Jashani, A., Talebbeydokhti, N., and Kl_ve, B. Modeling of nitrate removal for ion exchange resin in batch and _xed bed experiments", Desalination, 284, pp. 22{31 (2012). 32. Zheng, C. and Bennett, G.D., Applied Contaminant Transport Modeling, Wiley-Interscience, New York (2002). 33. Krivovichev, G.V. Numerical stability analysis of lattice Boltzmann equations for linear di_usion", Appl. Math. Inf. Sci., 9(4), pp. 1687{1692 (2014). 34. Niu, X., Shu, C., Chew, Y.T., and Wang, T.G. Investigation of stability and hydrodynamics of di_erent lattice Boltzmann models", J. Stat. Phys., 117(3), pp. 665{680 (2004). 35. Servan-Camas, B. and Tsai, F.T.C. Non-negativity and stability analyses of lattice Boltzmann method for advection-di_usion equation", J. Comput. Phys., 228(1), pp. 236{256 (2009). 36. Sterling, H.D. and Chen, S. Stability analysis of lattice Boltzmann methods", J. Comput. Phys., 123(1), pp. 196{206 (1996). 638 A.A. Hekmatzadeh et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 625{638 37. Suga, S. Numerical schemes obtained from lattice Boltzmann equations for advection di_usion equations", Int. J. Mod. Phys. C, 17(11), pp. 1563{1577 (2006). 38. Rao, P.R. and Schaefer, L.A. Numerical stability of explicit o_-lattice Boltzmann schemes: A comparative study", J. Comput. Phys., 285, pp. 251{264 (2015). 39. Huang, H., Lu, X., and Sukop, M. Numerical study of lattice Boltzmann methods for a convection-di_usion equation coupled with Navier-Stokes equations", J. Phys. A: Math. Theor., 44(5), p. 055001 (2011). 40. Li, L., Mei, R., and Klausner, J.F. Multiplerelaxation- time lattice Boltzmann model for the axisymmetric convection di_usion equation", Int. J. Heat Mass Transfer, 67, pp. 338{351 (2013). 41. Liu, H., Zhou, J.G., Li, M., and Zhao, Y. Multi-block lattice Boltzmann simulations of solute transport in shallow water ows", Adv. Water Resour., 58, pp. 24{ 40 (2013). 42. Seta, T., Takegoshi, E., and Okui, E. Lattice Boltzmann simulation of natural convection in porous media", Math. Comput. Simul., 72(2), pp. 195{200 (2006). 43. Karamouz, M., Ahmadi, A., and Akhbari, M., Groundwater Hydrology: Engineering, Planning, and Management, CRC Press, Boca Raton (2011). 44. Wang, H. and Anderson, M., Introduction to Groundwater Modeling: Finite Di_erences and Finite Element Methods, Freeman, San Francisco (1982). 45. Guo, Z. and Shu, C., Lattice Boltzmann Method and Its Applications in Engineering, World Scienti_c, Singapore (2013). 46. Saadat, S., Hekmatzadeh, A.A., and Karimi-Jashni, A. Mathematical modeling of the Ni (II) removal from aqueous solutions onto pre-treated rice husk in _xedbed columns: a comparison", Desalin. Water Treat., 57(36), pp. 16907{16918 (2016). 47. Reilly, T.E., Franke, L., and Bennett, G.D. The principle of superposition and its application in groundwater hydraulics", Techniques of Water-Resources Investigations of the United States Geological Survey (1984). 48. Al-Turbak, A.S. and Al-Muttair, F.F. Evaluation of dams as a recharge method", Int. J. Water Resour. Dev., 5(2), pp. 119{124 (1989). 49. Abdalla, O.A. and Al-Rawahi, A.S. Groundwater recharge dams in arid areas as tools for aquifer replenishment and mitigating seawater intrusion: example of AlKhod, Oman", Environ. Earth. Sci., 69(6), pp. 1951{1962 (2013).