References
1. Amiri, S., Talebbeydokhti, N., and Baghlani, A. A
two-dimensional well-balanced numerical model for
shallow water equations", Sci. Iran., 20(1), pp. 97{107
(2013).
2. Mahdavi, A. and Talebbeydokhti, N. A hybrid solid
boundary treatment algorithm for smoothed particle
hydrodynamics", Sci. Iran., 22(4), pp. 1457{1469
(2015).
3. Asadollahfardi, G., Rezaee, M., and Mehrjardi, G.T.
Simulation of unenhanced electrokinetic process for
lead removal from kaolinite clay", Int. J. Civ. Eng.,
14(4), pp. 263{270 (2016).
4. Alemi, M. and Maia, R. Numerical simulation of the
ow and local scour process around single and complex
bridge piers", Int. J. Civ. Eng., 16(5), pp. 475{487
(2018).
5. Hekmatzadeh, A.A., Papari, S., and Amiri, S.M.
Investigation of energy dissipation on various congurations
of stepped spillways considering several RANS
turbulence models", Ijst-T. Civ. Eng., 42(2), pp. 97{
109 (2018).
6. Mohamad, A.A. and Kuzmin, A. A critical evaluation
of force term in lattice Boltzmann method, natural
convection problem", Int. J. Heat Mass Transfer,
53(5), pp. 990{996 (2010).
7. Perumal, D.A. and Dass, A.K. A review on the development
of lattice Boltzmann computation of macro
uid
ows and heat transfer", Alexandria Eng. J.,
54(4), pp. 955{971 (2015).
A.A. Hekmatzadeh et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 625{638 637
8. Yan, Z., Yang, X., Li, S., and Hilpert M. Tworelaxation-
time lattice Boltzmann method and its
application to advective-diusive-reactive transport",
Adv. Water Resour., 109, pp. 333{342 (2017).
9. Guo, Z. and Shu, C., Lattice Boltzmann Method
and Its Applications in Engineering, World Scientic,
Singapore (2013).
10. Gao, J., Xing, H., Tian, Z., Pearce, J.K., Sedek, M.,
and Golding, S.D. Reactive transport in porous media
for CO2 sequestration: Pore scale modeling using the
lattice Boltzmann method", Comput. Geosci., 98, pp.
9{20 (2017).
11. Yang, Y. and Wang, M. Pore-scale modeling of chloride
ion diusion in cement microstructures", Cement
Concrete Comp., 85, pp. 92{104 (2018).
12. Shi, B. and Guo, Z. Lattice Boltzmann simulation of
some nonlinear convection-diusion equations", Comput.
Math. Appl., 61(12), pp. 3443{3452 (2011).
13. Sharma, K.V., Straka, R., and Tavares, F.W. New
cascaded thermal lattice Boltzmann method for simulations
of advection-diusion and convective heat
transfer", Int. J. Therm. Sci., 118, pp. 259{277
(2017).
14. Wang, H., Cater, J., Liu, H., Ding, X., and Huang,
W. A lattice Boltzmann model for solute transport in
open channel
ow", J. HYDROL., 556, pp. 419{426
(2018).
15. Mohamad, A.A., Lattice Boltzmann Method: Fundamentals
and Engineering Applications with Computer
Codes, Springer Science & Business Media, Springer
(2011).
16. Ibrahem, A.M., El-Amin, M.F., and Mohammadein,
A.A. Lattice Boltzmann technique for heat transport
phenomena coupled with melting process", Heat Mass
Transfer, 53(1), pp. 213{221 (2017).
17. Xia, Y., Wu, J., and Zhang, Y. Lattice-Boltzmann
simulation of two-dimensional super-diusion", Eng.
Appl. Comp. Fluid., 6(4), pp. 581{594 (2012).
18. Zhou, J.G. A lattice Boltzmann method for solute
transport", Int. J. Numer. Methods Fluids, 61(8), pp.
848{863 (2009).
19. Yoshida, H. and Nagaoka, M. Lattice Boltzmann
method for the convection-diusion equation in curvilinear
coordinate systems", J. Comput. Phys., 257, pp.
884{900 (2014).
20. Perko, J. and Patel, R.A. Single-relaxation-time lattice
Boltzmann scheme for advection-diusion problems
with large diusion-coecient heterogeneities and
high-advection transport", Phys. Rev. E, 89(5), p.
053309 (2014).
21. Hosseini, R., Rashidi, S., and Esfahani, J.A. A lattice
Boltzmann method to simulate combined radiationforce
convection heat transfer mode", J. Braz. Soc.
Mech. Sci. Eng., 2017, pp. 1{12 (2017).
22. Zheng, Y., Li, G., Guo, W., and Dong, C. Lattice
Boltzmann simulation to laminar pulsating
ow past
a circular cylinder with constant temperature", Heat
Mass Transfer, 2017, pp. 1{12 (2017).
23. Bin, D., Bao-Chang, S., and Guang-Chao, W. A
new lattice Bhatnagar-Gross-Krook model for the
convection-diusion equation with a source term",
Chin. Phys. Lett., 22(2), pp. 267{270 (2005).
24. Batot, G., Talon, L., Peysson, Y., Fleury, M., and
Bauer, D. Analytical and numerical investigation of
the advective and dispersive transport in Herschel-
Bulkley
uids by means of a lattice-Boltzmann tworelaxation-
time scheme", Chem. Eng. Sci., 141, pp.
271{281 (2016).
25. Huang, R. and Wu, H. A modied multiplerelaxation-
time lattice Boltzmann model for
convection-diusion equation", J. Comput. Phys.,
274, pp. 50{63 (2014).
26. Li, L., Mei, R., and Klausner, J.F. Lattice Boltzmann
models for the convection-diusion equation: D2Q5 vs
D2Q9", Int. J. Heat Mass Transfer, 108, pp. 41{62
(2017).
27. Chai, Z. and Zhao, T. Nonequilibrium scheme for
computing the
ux of the convection-diusion equation
in the framework of the lattice Boltzmann method",
Phys. Rev. E, 90(1), p. 013305 (2014).
28. Liu, Q., He, Y.L., Li, Q., and Tao, W.Q. A multiplerelaxation-
time lattice Boltzmann model for convection
heat transfer in porous media", Int. J. Heat Mass
Transfer, 73, pp. 761{775 (2014).
29. Chopard, B., Falcone, J., and Latt, J. The lattice
Boltzmann advection-diusion model revisited", Eur.
Phys. J. Special Topics, 171(1), pp. 245{249 (2009).
30. Li, Q., Chai, Z., and Shi, B. Lattice Boltzmann
model for a class of convection-diusion equations with
variable coecients", Comput. Math. Appl., 70(4), pp.
548{561 (2015).
31. Hekmatzadeh, A.A., Karimi-Jashani, A., Talebbeydokhti,
N., and Klve, B. Modeling of nitrate removal
for ion exchange resin in batch and xed bed experiments",
Desalination, 284, pp. 22{31 (2012).
32. Zheng, C. and Bennett, G.D., Applied Contaminant
Transport Modeling, Wiley-Interscience, New York
(2002).
33. Krivovichev, G.V. Numerical stability analysis of
lattice Boltzmann equations for linear diusion", Appl.
Math. Inf. Sci., 9(4), pp. 1687{1692 (2014).
34. Niu, X., Shu, C., Chew, Y.T., and Wang, T.G. Investigation
of stability and hydrodynamics of dierent
lattice Boltzmann models", J. Stat. Phys., 117(3), pp.
665{680 (2004).
35. Servan-Camas, B. and Tsai, F.T.C. Non-negativity
and stability analyses of lattice Boltzmann method
for advection-diusion equation", J. Comput. Phys.,
228(1), pp. 236{256 (2009).
36. Sterling, H.D. and Chen, S. Stability analysis of lattice
Boltzmann methods", J. Comput. Phys., 123(1),
pp. 196{206 (1996).
638 A.A. Hekmatzadeh et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 625{638
37. Suga, S. Numerical schemes obtained from lattice
Boltzmann equations for advection diusion equations",
Int. J. Mod. Phys. C, 17(11), pp. 1563{1577
(2006).
38. Rao, P.R. and Schaefer, L.A. Numerical stability of
explicit o-lattice Boltzmann schemes: A comparative
study", J. Comput. Phys., 285, pp. 251{264 (2015).
39. Huang, H., Lu, X., and Sukop, M. Numerical study of
lattice Boltzmann methods for a convection-diusion
equation coupled with Navier-Stokes equations", J.
Phys. A: Math. Theor., 44(5), p. 055001 (2011).
40. Li, L., Mei, R., and Klausner, J.F. Multiplerelaxation-
time lattice Boltzmann model for the axisymmetric
convection diusion equation", Int. J. Heat
Mass Transfer, 67, pp. 338{351 (2013).
41. Liu, H., Zhou, J.G., Li, M., and Zhao, Y. Multi-block
lattice Boltzmann simulations of solute transport in
shallow water
ows", Adv. Water Resour., 58, pp. 24{
40 (2013).
42. Seta, T., Takegoshi, E., and Okui, E. Lattice
Boltzmann simulation of natural convection in porous
media", Math. Comput. Simul., 72(2), pp. 195{200
(2006).
43. Karamouz, M., Ahmadi, A., and Akhbari, M., Groundwater
Hydrology: Engineering, Planning, and Management,
CRC Press, Boca Raton (2011).
44. Wang, H. and Anderson, M., Introduction to Groundwater
Modeling: Finite Dierences and Finite Element
Methods, Freeman, San Francisco (1982).
45. Guo, Z. and Shu, C., Lattice Boltzmann Method
and Its Applications in Engineering, World Scientic,
Singapore (2013).
46. Saadat, S., Hekmatzadeh, A.A., and Karimi-Jashni, A.
Mathematical modeling of the Ni (II) removal from
aqueous solutions onto pre-treated rice husk in xedbed
columns: a comparison", Desalin. Water Treat.,
57(36), pp. 16907{16918 (2016).
47. Reilly, T.E., Franke, L., and Bennett, G.D. The principle
of superposition and its application in groundwater
hydraulics", Techniques of Water-Resources Investigations
of the United States Geological Survey
(1984).
48. Al-Turbak, A.S. and Al-Muttair, F.F. Evaluation of
dams as a recharge method", Int. J. Water Resour.
Dev., 5(2), pp. 119{124 (1989).
49. Abdalla, O.A. and Al-Rawahi, A.S. Groundwater
recharge dams in arid areas as tools for aquifer replenishment
and mitigating seawater intrusion: example
of AlKhod, Oman", Environ. Earth. Sci., 69(6), pp.
1951{1962 (2013).