The experimental assessment of the effect of polypropylene fibers on the improvement of nano-silica concrete behavior

Document Type : Article


1 Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran.

2 Department of Textile Engineering, Arak Branch, Islamic Azad University, Arak, Iran.

3 Department of Mechanical Engineering, Arak Branch, Islamic Azad University, Arak, Iran.


In this study the influence of water-cement ratio on the mechanical properties (compressive, abrasion, tensile, flexural strength and permeability) of Nano-silica concrete reinforced with polypropylene fibers is evaluated. The specimens contain 4% of Nano-silica, 0.30, 0.35, 0.40, 0.45 and 0.50 of water-cement ratios and 0, 0.10, 0.15, 0.25 and 0.35 percent by volume of polypropylene fibers. Other design features remained fixed in all concrete samples. The results of the experiments showed that with decreasing the ratio of water to cement from 0.50 to 0.30, all the mechanical properties of the concrete were improved. In addition, the test results showed a significant increase in mechanical properties improvement of concrete by using polypropylene fibers. Tensile strength, flexural strength and abrasion resistance of concrete increased up to 22%, 40%, and 27% respectively for 28 days age specimens. Also, considerable reduction of hydraulic conductivity coefficient to 51% indicates high durability of these types of concrete. Compressive strength had increment of 22%, 15% and 14% for 7, 28 and 90 days age specimens respectively.


Main Subjects

1. Pospichal, O., Kucharczykova, B., Misak, P., and  Vymazal, T. Freeze-thaw resistance of concrete with  porous aggregate", Proc. Eng., 2(1), pp. 521{529  (2010).  2. Sanchez, F. and Sobolev, K. Nanotechnology in  concrete - a review", Const. Build. Materials, 24(11),  pp. 2060{2071 (2010).  3. Sne_, L., Labrincha, J.A., Ferreira, V.M., Hotza, D.,  and Repette, W.L. E_ect of nano-silica on rheology  and fresh properties of cement pastes and mortars",  Const. Build. Materials, 23(7), pp. 2487{2491 (2009).  4. Qing, Y.E., Zenan, Z.H., Deyu, K., and Rongshen,  C.H. Inuence of nano-SiO2 addition on properties of  hardened cement paste as compared with silica fume",  Const. Build. Materials, 21, pp. 539{545 (2007).  5. Jeng-ywan, S., Ta-peng, C., and Tien-chin, H. E_ect  of nano-silica on characterization of Portland cement  composite", Materials Sci. Eng. A, 424, pp. 266{274  (2006).  6. Mosto_nejad, D. and Farahbod, F. Parametric study  on moment redistribution in continuous RC beams  using ductility capacity concept", Iran. J. Sci. Tech.,  Trans. B: Eng., 31, pp. 459{471 (2007).  7. Ozawa, M. and Morimoto, H. E_ects of various _bres  on high-temperature spalling in high-performance concrete",  Constr. Build. Materials, 71, pp. 83{92 (2014).  8. Dehghan, S.M., Najafgholipour, M.A., Kamrava, A.R.,  and Khajepour, M. Application of ordinary _berreinforced  concrete layer for in-plane retro_tting of  unreinforced masonry walls: Test and modeling",  Scientia Iranica, 26, pp. 1089{1103 (2019).  9. Badv, K. and Omidi, A. E_ect of synthetic leachate  on the hydraulic conductivity of clayey soil in Urmia  city land_ll site", Iran. J. Sci. Tech., Trans. B: Eng.,  31, pp. 535{545 (2007).  10. ACI Committee 544, State-of-the-Art Report on Fiber  Reinforced Concrete, ACI 544.1-96, American Concrete  Institute, Farmington Hills, MI (1997).  11. Ma, H.L., Cui, C., Li, X., and Hu, S.L. Study on mechanical  properties of steel _ber reinforced autoclaved  lightweight shell-aggregate concrete", J. Mater. Des.,  52, pp. 565{571 (2014).  12. Sha_gh, P., Mahmud, H., and Jumaat, M.Z. E_ect of  steel _ber on the mechanical properties of oil palm shell  lightweight concrete", J. Mater. Des, 32, pp. 3926{  3932 (2011).  13. Mirsayar, M., Shi, X., and Zollinger, D. Evaluation  of interfacial bond strength between Portland cement  concrete and asphalt concrete layers using bi-material  SCB test specimen", Eng. Solid Mech., 5(4), pp. 293{  306 (2017).  14. Jafari, Kh., Tabatabaeian, M., Joshaghani, A., and  Ozbakkaloglu, T. Optimizing the mixture design of  polymer concrete: An experimental investigation",  Const. Build. Materials, 167, pp. 185{196 (2018).  15. Shariati, A., Shariati, M., Ramli Sulong, N.H., Suhatril,  M., Arabnejad Khanouki, M.M., and Mahoutian,  M. Experimental assessment of angle shear connectors  under monotonic and fully reversed cyclic loading  in high strength concrete", Const. Build. Materials,  52, pp. 276{283 (2014).  16. Ali, I. New generation adsorbents for water treatment",  Chem. Rev., 112, pp. 5073{5091 (2012).  17. Banthia, N. and Gupta, R. Inuence of polypropylene  _ber geometry on plastic shrinkage cracking in concrete",  Cem. Concr. Res., 36, pp. 1263{1267 (2006).  18. Shoemaker, C., Quiroga, P., Whitney, D., Jirsa, J.,  Wheat, H., and Fowler, D. Detailed evaluation of  performance FRP wrapped columns and beams in a  corrosive environment", Research Report No. 0-1774-  3, Tex. Dep. Transport. (2004).  19. Won, J., Park, C., Lee, S., Jang, C., and Won, C.  E_ect of crimped synthetic _bre surface treatments  on plastic shrinkage cracking of cement-based composites",  Mag. Concr. Res., 60, pp. 421{428 (2008).  20. Rashiddadash, P., Ramezanianpour, A.A., and  Mahdikhani, M. Experimental investigation on exural  toughness of hybrid _ber reinforced concrete  (HFRC) containing metakaolin and pumice", Const.  Build. Materials, 51, pp. 313{320 (2014).  21. Brandt, A.M. Fiber reinforced cement-based (FRC)  composites after over 40 years of development in  building and civil engineering", Compos. Struct., 86,  pp. 3{9 (2008).  22. Farnam, Y., Mohammadi, S., and Shekarchi, M. Experimental  and numerical investigations of low velocity  692 S. Piroti et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 682{692  impact behaviour of high-performance _ber reinforced  cement based composite", Int. J. Impact. Eng., 37(2),  pp. 220{229 (2010).  23. Ponikiewski, T. and Katzer, J. Mechanical characteristics  of green SCC modi_ed by steel and polymer  _bres", Rocznik Ochrona _Srodowiska, 16(1), pp. 173{  185 (2014).  24. Song, P.S. and Hawang, S. Mechanical properties of  high-strength steel _ber reinforced concrete", Const.  Build. Materials, 18(9), pp. 669{673 (2004).  25. Lim, J.C. and Ozbakkaloglu, T. Inuence of silica  fume on stress-strain behavior of FRP-con_ned HSC",  Const. Build. Materials, 63, pp. 11{24 (2014).  26. Yazici, H. The e_ect of curing conditions on compressive  strength of ultra-high strength concrete with high  volume mineral admixtures", Build. Environ., 42(5),  pp. 2083{2089 (2007).  27. Mohammadhassani, M., Suhatril, M., Shariati, M.,  and Ghanbari, F. Ductility and strength assessment  of HSC beams with varying of tensile reinforcement  ratios", Struct. Eng. Mech., 48(6), pp. 833{848 (2013).  28. Yermak, N., Pliya, P., Beaucour, A.-L., Simon, A., and  Noumowe, A. Inuence of steel and/or polypropylene  _bers on the behavior of concrete at high temperature:  Spalling, transfer and mechanical properties", Const.  Build. Materials, 132, pp. 240{250 (2017).  29. ASTM C 136, Standard Speci_cation for Standard  Sand, Annual Book of ASTM standards (2010).  30. ACI Committee 211, Standard Practice for Selecting  Proportions for Normal, Heavyweight and Mass Concrete,  American Concrete Institute, USA (2009).  31. BS 1881: Part 116, Testing Concrete: Method for  Determination of Compressive Strength of Concrete  Cubes, British Standard Institution, London (1983).  32. ASTM C 418, Standard Test Method for Abrasion  Resistance of Concrete by Sandblasting (2010).  33. ISO 1920-5, Testing of Concrete-Part 5: Properties of  Hardened Concrete other than Strength, Article 5 of  this standard speci_es the procedure for determination  of the depth of penetration of water under pressure  (2012).  34. ASTM C 496, Standard Test Method for Splitting  Tensile Strength of Cylindrical Concrete Specimens  (2010).  35. ASTM C 1018, Standard Test Method for Flexural  Toughness and First Crack Strength of Fiber Reinforced  Concrete (using beam with third point loading).