References
1. Meehan, C.L. and Vahedifard, F. Evaluation of
simplied methods for predicting earthquake-induced
slope displacements in earth dams and embankments",
Engineering Geology, 152(1), pp. 180{193 (2013).
2. Newmark, N.M. Eects of earthquakes on dams
and embankments", Geotechnique, 15(2), pp. 139{160
(1965).
3. Garini, E., Gazetas, G., and Anastasopoulos, I.
Asymmetric 'Newmark' sliding caused by motions
containing severe 'directivity' and '
ing' pulses",
Geotechnique, 61(9), pp. 733{756 (2011).
678 H. Javdanian et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 671{681
4. Makdisi, F.I. and Seed, H.B. Simplied procedure for
estimating dam and embankment earthquake-induced
deformations", Journal of Geotechnical Engineering,
104(7), pp. 849{867 (1978).
5. Sarma, S.K. Seismic stability of earth dams and embankments",
Geotechnique, 25(4), pp. 743{761 (1975).
6. Bray, J.D., Macedo, J., and Travasarou, T. Simpli
ed procedure for estimating seismic slope displacements
for subduction zone earthquakes", Journal
of Geotechnical and Geoenvironmental Engineering,
144(3), 04017124 (2017).
7. Hynes-Grin, M.E. and Franklin, A.G. Rationalizing
the seismic coecient method", Misc. Paper GL-84-13.
U.S. Army Waterway Experiment Station, Vicksburg,
Mississippi (1984).
8. Kramer, S.L. and Smith, M.W. Modied Newmark
model for seismic displacements of compliant slopes",
Journal of Geotechnical and Geoenvironmental Engineering,
123(7), pp. 635{644 (1997).
9. Bray, J.D. and Rathje, E.M. Earthquake-induced
displacements of solid-waste landlls", Journal of
Geotechnical and Geoenvironmental Engineering,
124(3), pp. 242{253 (1998).
10. Rathje, E.M. and Bray, J.D. Nonlinear coupled
seismic sliding analysis of earth structures", Journal
of Geotechnical and Geoenvironmental Engineering,
126(11), pp. 1002{1014 (2000).
11. Bray, J.D. and Travasarou, T. Simplied procedure
for estimating earthquake-induced deviatoric slope displacements",
Journal of Geotechnical and Geoenvironmental
Engineering, 133(4), pp. 381{392 (2007).
12. Jibson, R.W. Regression models for estimating coseismic
landslide displacement", Engineering Geology,
91(2), pp. 209{218 (2007).
13. Ebrahimian, B. Numerical analysis of nonlinear dynamic
behavior of earth dams", Frontiers of Architecture
and Civil Engineering in China, 5(1), pp. 24{40
(2011).
14. Park, D.S. and Kim, N.R. Safety evaluation of cored
rockll dams under high seismicity using dynamic
centrifuge modeling", Soil Dynamics and Earthquake
Engineering, 97, pp. 345{363 (2017).
15. Kim, M.K., Lee, S.H., Choo, Y.W., and Kim, D.S.
Seismic behaviors of earth-core and concrete-faced
rock-ll dams by dynamic centrifuge tests", Soil Dynamics
and Earthquake Engineering, 31(11), pp. 1579{
1593 (2011).
16. Singh, R., Roy, D., and Das, D. A correlation for
permanent earthquake-induced deformation of earth
embankments", Engineering Geology, 90(3), pp. 174{
185 (2007).
17. Singh, R. and Roy. D. Estimation of earthquakeinduced
crest settlements of embankments", American
Journal of Engineering and Applied Sciences, 2(3), pp.
515{525 (2009).
18. Jafarian, Y., Haddad, A., and Javdanian, H. Predictive
model for normalized shear modulus of cohesive
soils", Acta Geodynamica et Geomaterialia, 11(1), pp.
89{100 (2014).
19. Javdanian, H., Jafarian, Y., and Haddad, A. Predicting
damping ratio of ne-grained soils using soft computing
methodology", Arabian Journal of Geosciences,
8(6), pp. 3959{3969 (2015).
20. Javdanian, H., Haddad, A., and Jafarian, A. Evaluation
of dynamic behavior of ne-grained soils using
group method of data handling", Transportation Infrastructure
Engineering, 1(3), pp. 77{92 (2015).
21. Javdanian, H. Assessment of shear stiness ratio of
cohesionless soils using neural modeling", Modeling
Earth Systems and Environment, 3(3), pp. 1045{1053
(2017).
22. Javdanian, H. The Eect of geopolymerization on
the unconned compressive strength of stabilized negrained
soils", International Journal of Engineering-
Transactions B: Applications, 30(11), pp. 1673{1680
(2017).
23. Javdanian, H. and Lee, S. Evaluating unconned
compressive strength of cohesive soils stabilized with
geopolymer: a computational intelligence approach",
Engineering with Computers, 35(1), pp. 191{199
(2019).
24. Javdanian, H., Haddad, A., and Mehrzad, B. Experimental
and numerical investigation of the bearing
capacity of adjacent footings on reinforced soil", Electronic
Journal of Geotechnical Engineering, 17(R), pp.
2597{2617 (2012).
25. Javdanian, H. Evaluation of soil liquefaction potential
using energy approach: experimental and statistical
investigation", Bulletin of Engineering Geology and the
Environment (2017). DOI: 10.1007/s10064-017-1201-6
26. Yaghmaei-Sabegh, S. Earthquake ground-motion duration
estimation by using of general regression neural
network", Scientia Iranica, 25(5), pp. 2425-2439
(2017). DOI: 10.24200/sci.2017.4217
27. Najafzadeh, M. and Barani, G.A. Comparison of
group method of data handling based genetic programming
and back propagation systems to predict scour
depth around bridge piers", Scientia Iranica, 18(6),
pp. 1207{1213 (2011).
28. Najafzadeh, M., Barani, G.A., and Hessami-Kermani,
M.R. Group method of data handling to predict
scour depth around vertical piles under regular waves",
Scientia Iranica, 20(3), pp. 406{413 (2013).
29. Najafzadeh, M. and Lim, S.Y. Application of improved
neuro-fuzzy GMDH to predict scour depth at
sluice gates", Earth Science Informatics, 8(1), pp. 187{
196 (2015).
30. Najafzadeh, M., Shiri, J., and Rezaie-Balf, M. New
expression-based models to estimate scour depth at
clear water conditions in rectangular channels", Marine
Georesources & Geotechnology, 36(2), pp. 227{
235 (2018).
H. Javdanian et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 671{681 679
31. Najafzadeh, M., Tafarojnoruz, A., and Lim, S.Y. Prediction
of local scour depth downstream of sluice gates
using data-driven models", ISH Journal of Hydraulic
Engineering, 23(2), pp. 195{202 (2017).
32. Shooshpasha, I., Amiri, I., and MolaAbasi, H. An
investigation of friction angle correlation with geotechnical
properties for granular soils using GMDH type
neural networks", Scientia Iranica, 22(1), pp. 157{164
(2015).
33. Habibagahi, G. and Taherian, M. Prediction of collapse
potential for compacted soils using articial
neural networks", Scientia Iranica, 11(1), pp. 1{20
(2004).
34. Kovacevic, M., Bajat, B., and Gajic, B. Soil type
classication and estimation of soil properties using
support vector machines", Geoderma, 154(3), pp. 340{
347 (2010).
35. Pasolli, L., Notarnicola, C., and Bruzzone, L. Estimating
soil moisture with the support vector regression
technique", IEEE Geoscience and Remote Sensing
Letters, 8(6), pp. 1080{1084 (2011).
36. Lee, D., Kim, G., and Lee, K.E. Soil moisture
prediction using a support vector regression", Journal
of the Korean Data and Information Science Society,
24(2), pp. 401{408 (2013).
37. Elbisy, M.S. Support vector machine and regression
analysis to predict the eld hydraulic conductivity of
sandy soil", KSCE Journal of Civil Engineering, 19(7),
pp. 2307{2316 (2015).
38. Soltani, N. and Bagheripour, M.H. Seismic wave
scatter study in valleys using coupled 2D nite element
approach and absorbing boundaries", Scientia Iranica,
24(1), pp. 110{120 (2017).
39. Jafarian, Y., Javdanian, H., and Haddad, A. Straindependent
dynamic properties of Bushehr siliceouscarbonate
sand: Experimental and comparative
study", Soil Dynamics and Earthquake Engineering,
107, pp. 339{349 (2018).
40. Jafarian, Y., Javdanian, H., and Haddad, A. Dynamic
properties of calcareous and siliceous sands under
isotropic and anisotropic stress conditions", Soils and
Foundations, 58(1), pp. 172{184 (2018).
41. Gazetas, P. and Dakoulas, P. Seismic analysis and design
of rockll dams", Soil Dynamics and Earthquake
Engineering, 11, pp. 27{61 (1991).
42. Vapnik, V. An overview of statistical learning theory",
IEEE Transactions on Neural Networks, 10(5),
pp. 988{999 (1999).
........