Water flow stabilization using submerged weir for draft-tube reaction hydraulic turbine

Document Type : Article


1 Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.

2 Sustainable Developments in Civil Engineering Research Group, Faculty of Civil Engineering, Ton Duc Thang University, HoChi Minh City, Vietnam.


In turbine practice engineering, draft tube downstream running under extreme water flow pressure and velocity. This is causing a vibrations and pressure variation during different operation frequencies. The practical challenge of obtaining a stabilized water flow is ongoing domain of research. In this paper, a proposition of initiating submerged weir in the downstream of draft tube reaction turbine is inspected. The main goal of this research is to reduce the water flow pressure variation, velocity and shear distribution in accordance to the upstream water level influence. Two types of turbines including vertical Kaplan and Francis turbine units are examined. ANSYS CFX software tool is used to build three-dimension (3D) numerical models for the Kaplan and Francis turbines with building a submerged weir at the outlet of the draft tubes at three deferent height suggestions. The influence of the proposed submerged weir is studied the flow through these turbines by considering the dimensions of their components including the penstock with inlets, spiral casing, shafts and blades, and the draft tube with outlets. The findings of this research were tremendous proposition to solve the problem of negative pressure pulsation in draft tube of Kaplan and Francis turbines types.


Main Subjects

1.Pennacchi, P., Borghesani, P., and Chatterton, S. A  cyclostationary multi-domain analysis of uid instability  in Kaplan turbines", Mech. Syst. Signal Process,  60, pp. 375{390 (2015).  2. Kumar, P., Saini, R.P., Study of Cavitation in Hydro  Turbines-A Review (2010)  3. Dixon, S.L. and Hall, C.A. Hydraulic turbines", In:  Chapter 9, Fluid Mechanics and Thermodynamics of  Turbomachinery, pp. 361{418 (2014).  4. Grassmann, H. and Ganis, M.L. On partially static  Kaplan turbines", Renew. Energy, 30, pp. 179{186  (2005).  5. Luo, H.P. and Al-Dahhan, M.H. Veri_cation and  validation of CFD simulations for local ow dynamics  in a draft tube airlift bioreactor", Chem. Eng. Sci., 66,  pp. 907{923 (2011).  6. Fu, T., Deng, Z.D., Duncan, J.P., Zhou, D., Carlson,  T.J., Johnson, G.E., and Hou, H. Assessing  hydraulic conditions through Francis turbines using an  autonomous sensor device", Renew. Energy, 99, pp.  1244{1252 (2016).  7. Glatzel, T., Litterst, C., Cupelli, C., Lindemann, T.,  Moosmann, C., Niekrawietz, R., Streule, W., Zengerle,  R., and Koltay, P. Computational uid dynamics  (CFD) software tools for microuidic applications - A  case study", Comput. Fluids, 37, pp. 218{235 (2008).  8. Wang, Z.J. High-order computational uid dynamics  tools for aircraft design", Philos. Trans. A. Math.  Phys. Eng., Sci., 372, p. 20130318 (2014).  9. Lomax, H., Pulliam, T., Zingg, D., and Kowalewski,  T. Fundamentals of computational uid dynamics",  Appl. Mech. Rev., 55, p. B61 (2002).  10. Thapa, B.S., Thapa, B., and Dahlhaug, O.G. Empirical  modelling of sediment erosion in Francis turbines",  Energy, 41, pp. 386{391 (2012).  11. Stein, P., Sick, M., Dorer, P., White, P., and Braune,  A. Numerical simulation of the cavitating draft tube  vortex in a Francis turbine", In: 23rd IAHR Symposium  on Hydraulic Machinery and Systems, October  17{21, p. 4711 (2006)  12. Iliescu, M.S., Ciocan, G.D., and Avellan, F. Analysis  of the cavitating draft tube vortex in a Francis turbine  using particle image velocimetry measurements in twophase  ow", J. Fluids Eng., 130, p. 21105 (2008).  13. Jo_st, D. and Lipej, A. Numerical prediction of noncavitating  and cavitating vortex rope in a Francis  turbine draft tube", Stroj Vestnik/Journal Mech. Eng.,  57, pp. 445{456 (2011).  14. Zhang, H. and Zhang, L. Numerical simulation of  cavitating turbulent ow in a high head Francis turbine  at part load operation with OpenFOAM", Procedia  Eng., 31, pp. 156{165 (2012).  15. Qian, Z.D., Yang, J.D., and Huai, W.X. Numerical  simulation and analysis of pressure pulsation in Francis  hydraulic turbine with air admission", Journal of  Hydrodynamics, Ser. B, 19(4), pp. 467{472 (2007).  A.M. Salih Ameen et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 159{176 175  16. Anup, K.C., Thapa, B., and Lee, Y.H. Transient  numerical analysis of rotor-stator interaction in a  Francis turbine", Renew. Energy, 65, pp. 227{235  (2014).  17. Luna-Ram__rez, A., Campos-Amezcua, A., Dorantes-  G_omez, O., Mazur-Czerwiec, Z., and Mu~noz-Quezada,  R. Failure analysis of runner blades in a Francis  hydraulic turbine - Case study", Eng. Fail. Anal, 59,  pp. 314{325 (2016).  18. Landry, C., Favrel, A., Muller, A., Nicolet, C., and  Avellan, F. Local wave speed and bulk ow viscosity  in Francis turbines at part load operation", J. Hydraul.  Res., 54, pp. 185{196 (2016).  19. Trivedi, C., Cervantes, M.J., Gandhi, B.K., and  Dahlhaug, O.G. Experimental and numerical studies  for a high head Francis turbine at several operating  points", J. Fluids Eng., 135, p. 111102 (2013).  20. Gebreslassie, M.G., Tabor, G.R., and Belmont, M.R.  Numerical simulation of a new type of cross ow  tidal turbine using OpenFOAM - Part II: Investigation  of turbine-to-turbine interaction", Renew. Energy, 50,  pp. 1005{1013 (2013).  21. Negru, R., Muntean, S., Marsavina, L., Susan-Resiga,  R., and Pasca, N. Computation of stress distribution  in a Francis turbine runner induced by uid ow", In:  Computational Materials Science, pp. 253{259 (2012)  22. Minakov, A.V., Platonov, D.V., Dekterev, A.A.,  Sentyabov, A.V., and Zakharov, A.V. The numerical  simulation of low frequency pressure pulsations in the  high-head Francis turbine", Comput. Fluids, 111, pp.  197{205 (2015).  23. Trivedi, C., Cervantes, M.J., and Gunnar Dahlhaug,  O. Numerical techniques applied to hydraulic turbines:  A perspective review", Appl. Mech. Rev., 68,  p. 10802 (2016). DOI: 10.1115/1.4032681  24. Ko, P. and Kurosawa, S. Numerical simulation of  turbulence ow in a Kaplan turbine -Evaluation on  turbine performance prediction accuracy", IOP Conf.  Ser. Earth Environ. Sci., 22, pp. 1{10 (2014).  25. Javadi, A. and Nilsson, H. Unsteady numerical simulation  of the ow in the U9 Kaplan turbine model",  27th IAHR Symp. Hydraul. Mach. Syst., 22, pp. 1{9  (2014).  26. Favrel, A., Muller, A., Landry, C., Yamamoto, K.,  and Avellan, F. Study of the vortex-induced pressure  excitation source in a Francis turbine draft tube by  particle image velocimetry", Exp. Fluids, 56, pp. 1{15  (2015).  27. Mo, Z., Xiao, J., andWang, G. Numerical research on  ow characteristics around a hydraulic turbine runner  at small opening of cylindrical valve", Math. Probl.  Eng., 2016, Article ID: 6951839, 8 pages (2016).  28. Hou, C. Three-dimensional numerical analysis of ow  pattern in pressure forebay of hydropower station",  Procedia Eng., 28, pp. 128{135 (2012).  29. Hager, W. and Schwalt, M. Broad-crested weir", J.  Irrig. Drain. Eng., 120, pp. 13{26 (1994).  30. Gonzalez, C.A. and Chanson, H. Experimental measurements  of velocity and pressure distributions on a  large broad-crested weir", Flow Meas. Instrum, 18, pp.  107{113 (2007).  31. Khassaf, S.I., Abeed, K.R., and Saleh, L.A.M. Predicting  the breach hydrograph resulting due to hypothetical  failure of Haditha Dam", Jordan J. Civ. Eng.,  5, pp. 392{400 (2011).  32. Yong Ooi Lin, C. Autonomy re-constituted: Social  and gendered implications of dam resettlement on the  Orang Asli of Peninsular Malaysia", Gend. Technol.  Dev., 10, pp. 77{99 (2006).  33. Vilanova, M.R.N. and Balestieri, J.A.P. Modeling of  hydraulic and energy e_ciency indicators for water  supply systems", Renew. Sustain. Energy Rev., 48, pp.  540{557 (2015).  34. Samora, I., Hasmatuchi, V., Mnch-Allign, C., Franca,  M.J., Schleiss, A.J., and Ramos, H.M. Experimental  characterization of a _ve blade tubular propeller turbine  for pipe inline installation", Renew. Energy, 95,  pp. 356{366 (2016).  35. Li, Q.F., Quan, H., Li, R.N., and Jiang, D.J. Inuences  of guide vanes airfoil on hydraulic turbine runner  performance", In: Procedia Engineering, pp. 703{708  (2012).  36. Iryo, T. and Rowe, R.K. On the hydraulic behavior of  unsaturated nonwoven geotextiles", Geotext. Geomembranes,  21, pp. 381{404 (2003).  37. Feintuch, P. The international electrotechnical vocabulary  of the international electrotechnical commission",  Meta, 34, pp. 539{541 (1989).  38. Becker, D. Harmonizing the international electrotechnical  commission common information model (CIM)  and 61850", Electr. Power Res. Inst. (EPRI), Tech.  Rep., 1020098 (2010).  39. Muis, A., Sutikno, P., Soewono, A., and Hartono,  F. Design optimization of axial hydraulic turbine for  very low head application", In: Energy Procedia, 68,  pp. 263{273 (2015).  40. Slootweg, J.G., de Haan, S.W.H., Polinder, H., and  Kling, W.L. General model for representing variable  speed wind turbines in power system dynamics simulations",  IEEE Trans. Power Syst., 18, pp. 144{151  (2003).  41. Heckelsmueller, G.P. Application of variable speed  operation on Francis turbines", Ing. e Investig, 35, pp.  12{16 (2015).  42. Liu, S., Li, S., and Wu, Y. Pressure uctuation  prediction of a model Kaplan turbine by unsteady  turbulent ow simulation", J. Fluids Eng., 131, p.  101102 (2009).  43. Li, J., Yu, J., and Wu, Y. 3D unsteady turbulent  simulations of transients of the Francis turbine", In:  IOP Conference Series: Earth and Environmental  Science, p. 12001, IOP Publishing (2010).  176 A.M. Salih Ameen et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 159{176  44. Zhang, H. and Zhang, L. Numerical simulation of  cavitating turbulent ow in a high head Francis turbine  at part load operation with OpenFOAM", Procedia  Eng., 31, pp. 156{165 (2012).  45. Wei, S. and Zhang, L. Vibration analysis of hydropower  house based on uid-structure coupling numerical  method", Water Sci. Eng., 3, pp. 75{84  (2010).  46. Caupin, F. and Herbert, E. Cavitation in water:  A review", Comptes Rendus Physique, 7(9{10), pp.  1000{1017 (2006).  47. Wei, S. and Zhang, L. Vibration analysis of hydropower  house based on uid-structure coupling numerical  methodmethod", Water Sci. Eng., 3, pp. 75{84  (2010).