Molecular Dynamics Simulation: the Effect of Graphene on the Mechanical Properties of Epoxy Based Photoresist: SU8

Document Type : Article

Authors

1 Department of Polymer Engineering, Nanostructured Materials Research Centre, Sahand University of Technology, Sahand New Town, Tabriz, Iran.

2 Department of Polymer Eng., Sahand University of Technology

3 Institute of Polymeric Materials, Department of Polymer Engineering, Sahand University of ‎Technology, SUT, P.O. Box 51335-1996, Tabriz, Iran‎

4 Department of Mechanical Engineering, Sahand University of Technology, Sahand New Town, Tabriz, Iran.

5 Department of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran

Abstract

SU8 is an epoxy-Novolac resin, which is used as photo initiator in micro- and nano- fabrication techniques. From literature, graphene has been proved that results in significant improvement in the properties of the composites. However, due to nanometer size of the graphene layers there is no any experimental tool to obtain insight of the fillers inside the resin especially when the materials are under mechanical deformations where simulation techniques work well. Therefore, SU8 and SU8-graphene nanocomposites as the model compounds were taken to be investigated from atomistic molecular dynamic approach to demonstrate the effect of graphene layers. This leads to mechanical property enhancement such as Young’s, bulk and shear modules being affected by the aspect ratio of the graphene layers high aspect ratio graphene in SU8 leads to an 81% improvement in Young’s, 100% in bulk and 83% in shear moduli in addition to higher density and less graphene wrinkling.

Keywords

Main Subjects


References
1. Blagoi, G., Keller, S., Persson, F., Boisen, A., and
Jakobsen, M.H. Photochemical modi cation and patterning
of SU-8 using anthraquinone photolinkers",
Langmuir, 24(18), pp. 9929-9932 (2008).
2. Hu, M., Guo, Q., Zhang, T., Zhou, S., and Yang,
J. SU-8-induced strong bonding of polymer ligands
to
exible substrates via in situ cross-linked reaction
for improved surface metallization and fast fabrication
of high-quality
exible circuits", ACS Appl. Mater.
Inter., 8(7), pp. 4280-4286 (2016).
3. Nagaiyanallur, V.V., Kumar, D., Rossi, A., Zurcher,
S., and Spencer, N.D. Tailoring SU-8 Surfaces: covalent
attachment of polymers by means of nitrene
insertion", Langmuir, 30(33), pp. 10107-10111 (2014).
4. Rahiminejad, S., Pucci, E., Haasl, S., and Enoksson, P.
SU8 ridge-gap waveguide resonator", Int. J. Microw.
Wirel. T., 6(05), pp. 459-465 (2014).
5. Rodrguez-Ruiz, I., Llobera, A., Vila-Planas, J., Johnson,
D.W., Gomez-Morales, J., and Garca-Ruiz, J.M.
Analysis of the structural integrity of SU-8-based
opto
uidic systems for small-molecule crystallization
studies", Anal. Chem., 85(20), pp. 9678-9685 (2013).
6. Romeo, A., Liu, Q., Suo, Z., and Lacour, S.P. Elastomeric
substrates with embedded sti platforms for
stretchable electronics", Appl. Phys. Lett., 102(13),
pp. 131904 (2013).
7. Tian, Y., Shang, X., Wang, Y., and Lancaster, M.J.
Investigation of SU8 as a structural material for
fabricating passive millimeter-wave and terahertz components",
J. Micro/Nanolithogr. MEMS. MOEMS.,
14(4), pp. 044507-044507-9 (2015).
8. Feng, R. and Farris, R. The characterization of
thermal and elastic constants for an epoxy photoresist
SU8 coating", J. Mater. Sci., 37(22), pp. 4793-4799
(2002).
9. Mehboudi, A. and Yeom, J. A two-step sealing-andreinforcement
SU8 bonding paradigm for the fabrication
of shallow microchannels", J. Micromech. Microeng.,
28(3), pp. 035002 (2018).
10. Ramanathan, T., Stankovich, S., Dikin, D., Liu, H.,
Shen, H., Nguyen, S., and Brinson, L. Graphitic
nano llers in PMMA nanocomposites an investigation
of particle size and dispersion and their in
uence on
nanocomposite properties", J. Polym. Sci. Poly. Phys.,
45(15), pp. 2097-2112 (2007).
11. Ramanathan, T., Abdala, A., Stankovich, S., Dikin,
D., Herrera-Alonso, M., Piner, R., Adamson, D.,
Schniepp, H., Chen, X., and Ruo , R. Functionalized
graphene sheets for polymer nanocomposites", Nat.
Nanotechnol., 3(6), pp. 327-331 (2008).
12. George, J.J. and Bhowmick, A.K. Ethylene vinyl
acetate/expanded graphite nanocomposites by solution
intercalation: preparation, characterization and
properties", J. Mater. Sci., 43(2), pp. 702-708 (2008).
13. Villar-Rodil, S., Paredes, J.I., Martnez-Alonso, A.,
and Tascon, J.M. Preparation of graphene dispersions
and graphene-polymer composites in organic media",
J. Mater. Chem., 19(22), pp. 3591-3593 (2009).
14. Duplock, E.J., Scheer, M., and Lindan, P.J. Hallmark
of perfect graphene", Phys. Rev. Lett., 92(22),
pp. 225502 (2004).
15. Schniepp, H.C., Li, J-L., McAllister, M.J., Sai, H.,
Herrera-Alonso, M., Adamson, D.H., Prud'homme,
R.K., Car, R., Saville, D.A., and Aksay, I.A. Functionalized
single graphene sheets derived from splitting
graphite oxide", J. Phys. Chem. B, 110(17), pp. 8535-
8539 (2006).
16. Geim, A.K. and Novoselov, K.S. The rise of
graphene", Nat. Mater., 6(3), pp. 183-191 (2007).
17. Szatkowski, P., Pielichowska, K., and Blazewicz,
S. Mechanical and thermal properties of carbonnanotube-
reinforced self-healing polyurethanes", J.
Mater. Sci., 52(20), pp. 1-14 (2017).
18. Cai, D. and Song, M. Recent advance in functionalized
graphene/polymer nanocomposites", J. Mater.
Chem., 20(37), pp. 7906-7915 (2010).
F. Mohammadzadeh Honarvar et al./Scientia Iranica, Transactions F: Nanotechnology 25 (2018) 1879{1890 1889
19. Ovid'Ko, I. Enhanced mechanical properties of polymer
{matrix nanocomposites reinforced by graphene
inclusions: a review", Rev. Adv. Mater. Sci., 34(1),
pp. 19-25 (2013).
20. Zeng, Q., Yu, A., and Lu, G. Multiscale modeling and
simulation of polymer nanocomposites", Prog. Polym.
Sci., 33(2), pp. 191-269 (2008).
21. Rissanou, A.N. and Harmandaris, V. Structure and
dynamics of poly (methyl methacrylate)/graphene systems
through atomistic molecular dynamics simulations",
J. Nanopart. Res., 15(5), pp. 1589 (2013).
22. Rissanou, A.N. and Harmandaris, V. Dynamics of
various polymer-graphene interfacial systems through
atomistic molecular dynamics simulations", Matter.,
10(16), pp. 2876-2888 (2014).
23. Alian, A., Dewapriya, M., and Meguid, S. Molecular
dynamics study of the reinforcement e ect of graphene
in multilayered polymer nanocomposites", Mater. Design,
124, pp. 47-57 (2017).
24. Guryel, S., Walker, M., Geerlings, P., De Proft, F., and
Wilson, M. Molecular dynamics simulations of the
structure and the morphology of graphene/polymer
nanocomposites", Phys. Chem. Chem. Phys., 19(20),
pp. 12959-12969 (2017).
25. Sun, R., Li, L., Feng, C., Kitipornchai, S. and Yang, J.
Tensile behavior of polymer nanocomposite reinforced
with graphene containing defects", Eur. Polym. J., 98,
pp. 475-482 (2018).
26. Skountzos, E.N., Anastassiou, A., Mavrantzas, V.G.,
and Theodorou, D.N. Determination of the mechanical
properties of a poly (methyl methacrylate)
nanocomposite with functionalized graphene
sheets through detailed atomistic simulations", Macromolecules,
47(22), pp. 8072-8088 (2014).
27. Ebrahimi, S., Ghafoori-Tabrizi, K., and Ra i-Tabar,
H. Multi-scale computational modelling of the mechanical
behaviour of the chitosan biological polymer
embedded with graphene and carbon nanotube",
Comp. Mater. Sci., 53(1), pp. 347-353 (2012).
28. Rahman, R. and Haque, A. Molecular modeling of
crosslinked graphene-epoxy nanocomposites for characterization
of elastic constants and interfacial properties",
Compos. Part B-Eng., 54, pp. 353-364 (2013).
29. Theodorou, D.N. and Suter, U.W. Atomistic modeling
of mechanical properties of polymeric glasses",
Macromolecules, 19(1), pp. 139-154 (1986).
30. Rapold, R.F., Suter, U.W., and Theodorou, D.N.
Static atomistic modelling of the structure and ring
dynamics of bulk amorphous polystyrene", Macromol.
Theory Simul., 3(1), pp. 19-43 (1994).
31. Theodorou, D.N. and Suter, U.W. Detailed molecular
structure of a vinyl polymer glass", Macromolecules,
18(7), pp. 1467-1478 (1985).
32. Zhang, J., Chan-Park, M.B., and Li, C.M. Network
properties and acid degradability of epoxy-based SU-
8 resists containing reactive gamma-butyrolactone",
Sensor. Actuat. B-Chem., 131(2), pp. 609-620 (2008).
33. Majidian, M., Grimaldi, C., Pisoni, A., Forro, L.
and Magrez, A. Electrical conduction of photopatternable
SU8-graphene composites", Carbon, 80,
pp. 364-372 (2014).
34. Liu, Y., Zhang, C., Du, Z., and Li, H. Preparation
and curing kinetics of bisphenol A type novolac epoxy
resins", J. Appl. Polym. Sci., 99(3), pp. 858-868
(2006).
35. Tam, L-h. and Lau, D. Moisture e ect on the mechanical
and interfacial properties of epoxy-bonded
material system: An atomistic and experimental investigation",
Polymer, 57, pp. 132-142 (2015).
36. Suter, M., Ergeneman, O., Zurcher, J., Moitzi, C.,
Pane, S., Rudin, T., Pratsinis, S., Nelson, B., and
Hierold, C. A photopatternable superparamagnetic
nanocomposite: Material characterization and fabrication
of microstructures", Sensor. Actuat. B-Chem.,
156(1), pp. 433-443 (2011).
37. Hossenlopp, J., Jiang, L., Cernosek, R., and Josse,
F. Characterization of epoxy resin (SU-8) lm using
thickness-shear mode (TSM) resonator under various
conditions", J. Polym. Sci. Pol. Phys., 42(12), pp.
2373-2384 (2004).
38. Tam, L-h. and Lau, D. A molecular dynamics investigation
on the cross-linking and physical properties of
epoxy-based materials", RSC Adv., 4(62), pp. 33074-
33081 (2014).
39. Shuichi, N. Constant temperature molecular dynamics
methods", Prog. Theor. Phys. Supp., 103, pp. 1-46
(1991).
40. Hoover, W.G. Constant-pressure equations of motion",
Phys. Rev. A., 34(3), pp. 2499-2500 (1986).
41. Verlet, L. Computer experiments on classical
uids.
I. Thermodynamical properties of Lennard-Jones
molecules", Phys. Rev., 159(1), pp. 98-103 (1967).
42. Verlet, L. Computer experiments on classical
uids.
ii. Equilibrium correlation functions", Phys. Rev.,
165(1), pp. 201-214 (1968).
43. Plimpton, S. Crozier, P., and Thompson, A.
LAMMPS-large-scale atomic/molecular massively
parallel simulator", Sandia National Laboratories, 18
(2007).
44. Lin, F., Xiang, Y., and Shen, H-S. Temperature
dependent mechanical properties of graphene reinforced
polymer nanocomposites-A molecular dynamics
simulation", Compos. Part B-Eng., 111, pp. 261-269
(2017).
45. Ragab, T., McDonald, J., and Basaran, C. Aspect ratio
e ect on shear modulus and ultimate shear strength
of graphene nanoribbons", Diam. Relat. Mater., 74,
pp. 9-15 (2017).
46. Seitz, J. The estimation of mechanical properties of
polymers from molecular structure", J. Appl. Polym.
Sci., 49(8), pp. 1331-1351 (1993).
1890 F. Mohammadzadeh Honarvar et al./Scientia Iranica, Transactions F: Nanotechnology 25 (2018) 1879{1890