Structural control of RC buildings subjected to near-fault ground motions in terms of tuned mass dampers

Document Type : Article

Authors

1 Faculty of Civil Engineering, Semnan University, Iran

2 Faculty of Civil Engineering, Semnan University, Semnan, Iran.

Abstract

To design a proper structure against earthquake in modern systems, control systems are of special importance. Added passive tuned mass damper is one of such systems which will be discussed in this paper. In this regard, the effect of adding this damper to a 10-floor concrete structure under six near-fault earthquakes is investigated. To do this, a code has been written in MATLAB which receives ground motion record of the occurring earthquake as well as the structure specifications such as matrix of mass, stiffness and damping as an input. As output, it presents time-history of responses for top floor, a diagram for the floor displacement and drift of the structure at the time that the top floor has reached the maximum displacement. Also, these diagrams are compared both when the added damper is present and absent. It is observed that the added passive control of TMD is highly effective in the reduction of structure response against earthquake which in turn depends on the properties of the earthquake and therefore should be chosen based on the site seismic conditions.

Keywords

Main Subjects


1. Hoseini Vaez, S.R., Sharbatdar, M.K., Ghodrati Amiri,  G., Naderpour, H., and Kheyroddin, A. Dominant  pulse simulation of near-fault ground motions", Earthquake  Engineering and Engineering Vibration, 12, pp.  267{278 (2013). DOI: 10.1007/s11803-013-0170-4  2. Barros, R.C., Naderpour, H., Khatami, S.M., and  Mortezaei, A. Inuence of seismic pounding on RC  buildings with and without base isolation system subject  to near-fault ground motions", Journal of Rehabilitation  in Civil Engineering, 1, pp. 39{52 (2013). DOI:  10.22075/jrce.2013.4  3. Khademi, F., Akbari, M., Jamal, S.M., and Nikoo,  M. Multiple linear regression, arti_cial neural network,  and fuzzy logic prediction of 28 days compressive  strength of concrete", Frontiers of Structural  and Civil Engineering, 11, pp. 90{99 (2017). DOI:  10.1007/s11709-016-0363-9  4. Kheyroddin, A., Hoseini Vaez, S.R., and Naderpour,  H. Numerical analysis of slab-column connections  strengthened with carbon _ber reinforced polymers",  Journal of Applied Sciences, 8(3), pp. 420{431 (2008).  5. Sharbatdar, M.K., Hoseini Vaez, S.R., Amiri, G.G.,  and Naderpour, H. Seismic response of base-isolated  structures with LRB and FPS under near fault ground  motions", Procedia Engineering, 14, pp. 3245{3251  (2011). DOI: 10.1016/j.proeng.2011.07.410  6. Frahm, H. Device for damping vibrations of bodies",  U.S. Patent 989958, Issued April 18 (1911).  7. Bishop, R.E.D. and Welbourn, D.B. The problem of  the dynamic vibration absorber", Engineering, London,  174, p. 769 (1952).  8. Den Hartog, J.P. Mechanical Vibrations, Courier Corporation  (1985).  9. Falcon, K.C., Stone, B.J., Simcock, W.D., and Andrew,  C. Optimization of vibration absorbers: a  graphical method for use on idealized systems with restricted  damping", Journal of Mechanical Engineering  Science, 9, pp. 374{381 (1967).  10. Randall, S.E., Halsted, D.M. III, and Taylor, D.L.  Optimum vibration absorbers for linear damped systems",  Journal of Mechanical Design, 103, pp. 908{  913 (1981).  11. Warburton, G.B. Optimum absorber parameters  for various combinations of response and excitation  parameters", Earthquake Engineering & Structural  Dynamics, 10, pp. 381{401 (1982). DOI:  10.1002/eqe.4290100304  12. Villaverde, A., Benito, A., Viaplana, E., and Cubarsi,  R. Fine regulation of cI857-controlled gene expression  in continuous culture of recombinant Escherichia coli  by temperature", Applied and Environmental Microbiology,  59, pp. 3485{3487 (1993).  13. Tsai, L.H., Takahashi, T., Caviness, V.S., and Harlow,  E. Activity and expression pattern of cyclindependent  kinase 5 in the embryonic mouse nervous  system", Development, 119, pp. 1029{1040 (1993).  14. Chang, C.C. Mass dampers and their optimal  designs for building vibration control", Engineering  Structures, 21, pp. 454{463 (1999). DOI:  https://doi.org/10.1016/S0141-0296(97)00213-7  15. Rana, R. and Soong, T.T. Parametric study and  simpli_ed design of tuned mass dampers", Engineering  Structures, 20, pp. 193{204 (1998). DOI:  http://dx.doi.org/10.1016/S0141-0296(97)00078-3  16. Singh, M.P., Singh, S., and Moreschi, L.M. Tuned  mass dampers for response control of torsional buildings",  Earthquake Engineering & Structural Dynamics,  31, pp. 749{769 (2002). DOI: 10.1002/eqe.119  17. Lopez Garcia, D. and Soong, T.T. E_ciency of  a simple approach to damper allocation in MDOF  structures", Journal of Structural Control, 9, pp. 19{  30 (2002). DOI: 10.1002/stc.3  18. Pinkaew, T., Lukkunaprasit, P., and Chatupote, P.  Seismic e_ectiveness of tuned mass dampers for  damage reduction of structures", Engineering Structures,  25, pp. 39{46 (2003). DOI: 10.1016/S0141-  0296(02)00115-3  19. Bishop, J.A. and Striz, A.G. On using genetic algorithms  for optimum damper placement in space  trusses", Structural and Multidisciplinary Optimization,  28, pp. 136{145 (2004). DOI: 10.1007/s00158-  004-0441-9  20. Kokil, A.S. and Shrikhande, M. Optimal placement of  supplemental dampers in seismic design of structures",  H. Naderpour et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 122{133 133  Journal of Seismology and Earthquake Engineering, 9,  p. 125 (2007).  21. Aydin, E., Boduroglu, M.H., and Guney, D. Optimal  damper distribution for seismic rehabilitation of planar  building structures", Engineering Structures, 29, pp.  176{185 (2007). DOI: 10.1016/j.engstruct.2006.04.016  22. Ok, S.-Y., Song, J., and Park, K.-S. Development  of optimal design formula for bi-tuned mass  dampers using multi-objective optimization", Journal  of Sound and Vibration, 322, pp. 60{77 (2009). DOI:  10.1016/j.jsv.2008.11.023  23. Sgobba, S. and Marano, G.C. Optimum design  of linear tuned mass dampers for structures with  nonlinear behaviour", Mechanical Systems and Signal  Processing, 24, pp. 1739{1755 (2010). DOI:  10.1016/j.ymssp.2010.01.009  24. Ar_adi, Y. and Hadi, M.N.S. Optimum placement  and properties of tuned mass dampers using hybrid  genetic algorithms", Iran University of Science &  Technology, 1, pp. 167{187 (2011).  25. Steinbuch, R. Bionic optimisation of the earthquake  resistance of high buildings by tuned mass dampers",  Journal of Bionic Engineering, 8, pp. 335{344 (2011).  DOI: 10.1016/S1672-6529(11)60036-X  26. Estekanchi, H.E. and Basim, M.C. Optimal damper  placement in steel frames by the endurance time  method", The Structural Design of Tall and Special  Buildings, 20, pp. 612{630 (2011). DOI:  10.1002/tal.689  27. Naderpour, H., Barros, R.C., Khatami, S.M., and  Jankowski, R. Numerical study on pounding between  two adjacent buildings under earthquake excitation",  Shock and Vibration, 2016, Article ID 1504783, 9  pages (2016). DOI: 10.1155/2016/1504783  28. Naderpour, H. and Fakharian, P. A synthesis of peak  picking method and wavelet packet transform for structural  equation: modal identi_cation", KSCE Journal  of Civil Engineering, 20, pp. 2859{2867 (2016). DOI:  10.1007/s12205-016-0523-4  29. Sakr, Tharwat A. Vibration control of buildings  by using partial oor loads as multiple tuned mass  dampers", HBRC Journal, 13(2), pp. 133{144 (2017).  DOI: 10.1016/j.hbrcj.2015.04.004