A vacuum-refilled tensiometer for deep monitoring of in-situ pore water pressure

Document Type : Article


1 Department of Civil Engineering, Sharif University of Technology, Tehran, Iran.

2 Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, 1 Xikang Road, Nanjing 210098, China.

3 Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.


Real-time measurement of soil water pressure has been recognized as an essential part of investigating water flow in unsaturated soils. Tensiometry, amongst different measuring techniques, is a common method for direct evaluation of water pressure. However, the lower limit of measurable water pressure by a conventional tensiometer becomes even more limited by increasing its length in the vertical installation. This paper describes development of a vacuum-refilled tensiometer (VRT) for monitoring soil water pressure independent of installation depth. This is achieved by fixing the distance between pressure sensor and ceramic cup together with incorporating an ancillary vacuum-refilling assembly into its design. The assembly allows for more efficient replacement of diffused air into the ceramic cup and reservoir with water. The new tensiometer is designed to withstand both negative and positive water pressure of up to almost one bar. In addition, the response time of the tensiometer to a change in negative water pressure for its working range (≥ -80 kPa) is very quick, in the order of seconds and one minute at most. The long-term performance of the new tensiometer is evaluated through a five-month monitoring program in the laboratory, simulating cyclic wetting and drying in the field.


Main Subjects

1. Livingston, B.E. A method for controlling plant  moisture", The Plant World, 11, pp. 39{40 (1908).  2. Or, D. History of soil science who invented the  tensiometer?", Soil Sci. Soc. Am. J., 65, pp. 1{3  (2001).  3. Tarantino, A., Ridley, A.M., and Toll, D.G. Field  measurement of suction, water content, and water  permeability", Geotech. Geolo. Eng., 26, pp. 751{782  (2008).  4. Marinho, F.A.M., Take, W.A., and Tarantino, A.  Measurement of matric suction using tensiometric  and axis translation techniques", Geotech. Geolo. Eng.,  26, pp. 615{631 (2008).  5. Stannard, D.I. Tensiometers-theory, construction,  and use", Geotech. Test. J., 15, pp. 48{58 (1992).  6. Bianchi, W.B. Measuring soil moisture tension  changes", J. Agricul. Eng., 43, pp. 398{399 (1962).  7. Watson, K.K. A recording _eld tensiometer with  rapid response characteristics", J. Hydro., 5, pp. 33{39  (1967).  8. Hubbell, J.M. and Sisson, J.B. Advanced tensiometer  for shallow or deep soil water potential measurements",  Soil Sci., 163, pp. 271{277 (1998).  9. Sisson, J.B., Gee, G.W., Hubbell, J.M., Bratton,  W.L., Ritter, J.C., Ward, A.L., and Caldwell, T.G.  Advances in tensiometry for long-term monitoring of  soil water pressures", Vadose Zone J., 1, pp. 310{315  (2002).  10. Faybishenko, B. Tensiometer for shallow and deep  measurements of water pressure in vadose zone and  groundwater", Soil Sci., 165, pp. 473{482 (2000).  11. Raj, M. and Sengupta, A. Rain-triggered slope failure  of the railway embankment at Malda, India", Acta  Geotech., 9(5), pp. 789{798 (2014).  12. Garg, A., Li, J., Hou, J., Berretta, C., and Garg, A. A  new computational approach for estimation of wilting  point for green infrastructure", Measurement, 111, pp.  351{358 (2017).  13. Ridley, A.M., Dineen, K., Burland, J.B., and Vaughan,  P.R. Soil matrix suction: Some examples of its measurement  and application in geotechnical engineering",  G_eotechnique, 53, pp. 241{253 (2003).  14. Hubbell, J.M. and Sisson, J.B. Portable tensiometer  use in deep boreholes", Soil Sci., 161, pp. 376{381  (1996).  15. Oliveira, O.M. and Marinho, F.A.M. Suction equilibration  time for a high capacity tensiometer", Geotech.  Test. J., 31, pp. 101{105 (2008).  16. Liu, J., Chen, R., Sadeghi, H., and Ng, C.W.W. A  _eld study of stress-dependent soil-water characteristic  curves and permeability functions of a loess soil for  land_ll covers", The 1st Int. Conf. on Geo-Energy and  Geo-Environment, 1, Hong Kong, pp. 118{119 (2015).  17. ASTM Standard practice for classi_cation of soils  for engineering purposes (uni_ed soil classi_cation  system)", ASTM standard D2487, Am. Soc. for Test.  and Mat., West Conshohocken, Pa (2006).  18. Ng, C.W.W., Sadeghi, H., and Jafarzadeh, F. Compression  and shear strength characteristics of compacted  loess at high suctions", Can. Geotech. J., 54(5),  pp. 690{699 (2017). https://doi.org/10.1139/cgj-2016-  0347  19. Ng, C.W.W., Baghbanrezvan, S., Sadeghi, H., Zhou,  C., and Jafarzadeh, F. E_ect of specimen preparation  techniques on dynamic properties of unsaturated _negrained  soil at high suctions", Can. Geotech. J., 54(9),  pp. 1310{1319 (2017). https://doi.org/10.1139/cgj-  2016-0531  20. Sadeghi, H., Hossen, S.B., Chiu, A.C.F., Cheng, Q.,  and Ng, C.W.W. Water retention curves of intact and  re-compacted loess at di_erent net stresses", The 15th  Asian Reg. Conf. on Soil Mech. and Geotech. Eng.  (15ARC), Geotech. Soc. Spec. Publ., 2(4), Fukuoka,  Japan, pp. 221{225 (2016).  21. Ng, C.W.W., Sadeghi, H., Hossen, S.B., Chiu, A.C.F.,  Alonso, E.E., and Baghbanrezvan, S. Water retention  and volumetric characteristics of intact and recompacted  loess", Can. Geotech. J., 53(8), pp. 1258{  1269 (2016). https://doi.org/10.1139/cgj-2015-0364  606 H. Sadeghi et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 596{606  22. Ridley, A.M., Marsland, F., and Patel, A. Tensiometers:  their design and use for civil engineering  purposes", Proc. of the 1st Int. Conf. on Site Charact.,  2, Atlanta, pp. 851{856 (1998).  23. Whalley, W.R., Lock, G., Jenkins, M., Peloe, T., Burek,  K., Balendonck, J., Take, W.A., Tuzel, I.H., and  Tuzel, Y. Measurement of low matric potentials with  porous matrix sensors and water-_lled tensiometers",  Soil Sci. Soc. Am. J., 73, pp. 1796{1803 (2009).