2,4-Dichlorophenoxyacetic acid Adsorption from Contaminated Water through Activated Carbon Reclaimed with Zero-Valent Iron and Titanium Dioxide

Document Type : Article

Authors

1 دانشگاه اصفهان

2 University of Isfahan

3 university of Isfahan

Abstract

The sol-gel method was used to synthesize zero-valent iron/titanium dioxide supported on activated carbon (Fe0/TiO2/AC) Adsorbent and the adsorbents were comprehensively characterized by XRF, XRD, FT-IR, BET, FE-SEM and EDX analysis. The batch experiments were performed to evaluate the effect of adsorbent type, pH of solution, pollutant initial concentration and contact time on the 2,4-dichlorophenoxyacetic acid (2,4-D) adsorption efficiency. The equilibrium experiments revealed that the Langmuir isotherm was good fitted to the adsorption equilibrium data, whereas; the adsorption kinetic experiments indicated that the adsorption procedure was excellent described through a pseudo-first-order kinetic model. The obtained maximum adsorption capacities from Langmuir isotherms of 86.5, 87.5, 86,57 and 88.76 mg/g were achieved for activated carbon (AC), zero-valent iron/activated carbon (Fe0/AC), titanium dioxide/activated carbon (TiO2/AC) and Fe0/TiO2/AC at the 2,4-D initial concentration of 90 mg/L, pH=4 and 25 ℃, respectively.

Keywords

Main Subjects


References
1. Youssef, A.M., El-Didamony, H., El-Sharabasy, S.F.,
Sobhy, M., Hassan, A.F., and Bolaneke, R. Adsorption
of 2,4-dichlorophenoxyacetic acid on di erent
types of activated carbons based date palm pits:
kinetic and thermodynamics studies", Int. Res. J. Pure
Appl. Chem., 14(1), pp. 1-15 (2017).
2. Cansado, I.P.P., Mourao, P.A.M., Gomez, J.A.F.L.,
and Almodovar, V. Adsorption of MCPA, 2,4-D and
diuron onto activated carbons from wood composites",
Ci^encia & Tecnologia dos Materiais, 29, pp. 224-228
(2017).
3. Trivedi, N.S., Kharkar, R.A., and Mandavgane, S.A.
2,4-dichlorophenoxyacetic acid adsorption on adsorbent
prepared from groundnut shell: E ect of preparation
conditions on equilibrium adsorption capacity",
Arab. J. Chem., 7, pp. 22-31 (2016).
1408 Sh. Jokar Baloochi et al./Scientia Iranica, Transactions C: Chemistry and ... 25 (2018) 1395{1411
4. Bazrafshan, E., Mostafapour, F.K., Faridi, H., Farzadkia,
M., Sargazi, S., and Sohrabi, A. Removal of
2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous
environments using single-walled carbon nanotubes",
Health Scope, 2(1), pp. 39-46 (2013).
5. Lu, X., Shao, Y., Gao, N., and Ding, L. Equilibrium,
thermodynamic, and kinetic studies of the adsorption
of 2,4-dichlorophenoxyacetic acid from aqueous solution
by MIEX resin", J. Chem. Eng. Data., 60(5), pp.
1259-1269 (2015).
6. Li, Q., Sun, J., Ren, T., Guo, L., Yang, Z., Yang,
Q., and Chen, H. Adsorption mechanism of 2,4-
dichlorophenoxyacetic acid onto nitric acid modi ed
activated carbon ber", Environ. Technol., 39(7), pp.
895-906 (2018).
7. Njoku, V.O., Islam, M.A., Asif, M., and Hameed,
B. Adsorption of 2,4-dichlorophenoxyacetic acid by
mesoporous activated carbon prepared from H3PO4-
activated langsat empty fruit bunch", J. Environ.
Manage., 154, pp. 138-144 (2015).
8. Schenone, A.V., Conte, L.O., Botta, M.A., and Alfano,
O.M. Modeling and optimization of photo-Fenton
degradation of 2,4-D using ferrioxalate complex and
response surface methodology (RSM)", J. Environ.
Manage., 155, pp. 177-183 (2015).
9. Guidelines for Drinking-Water Quality, 4th Ed incorporating
the rst addendum, pp. 347-348, World
Health Organization, Geneva (2017).
10. Njoku, V.O., Foo, K.Y., and Hameed, B.H.
Microwave-assisted preparation of pumpkin seed hull
activated carbon and its application for the adsorptive
removal of 2,4-dichlorophenoxyacetic acid", Chem.
Eng. J., 215, pp. 383-388 (2013).
11. Bian, X., Chen, J., and Ji, R. Degradation of 2,4-
dichlorophenoxyacetic acid (2,4-D) by novel photocatalytic
material of tourmaline-coated TiO2 nanoparticles:
kinetic study and model", Materials, 6(4), pp.
1530-1542 (2013).
12. Sahinkaya, S.,  Ozdemir, C., and Onucyildiz, M.
Treatment of pesticide wastewater by physicochemical
and fenton processes", Asian J. Chem., 20(5), pp.
3795-3804 (2008).
13. Sahithya, K. and Das, N. Remediation of pesticides
using nanomaterials: an overview", Int. J. Chem.
Tech. Res., 8(8), pp. 86-91 (2015).
14. Rojas, R., Morillo, J., Usero, J., Vanderlinden, E.,
and El Bakouri, H. Adsorption study of low-cost
and locally available organic substances and a soil to
remove pesticides from aqueous solutions", J. Hydrol,
520, pp. 461-472 (2014).
15. Deokar, S.K. and Mandavgane, S.A. Estimation
of packed-bed parameters and prediction of
breakthrough curves for adsorptive removal of 2,4-
dichlorophenoxyacetic acid using rice husk ash", J.
Environ. Chem. Eng., 3(3), pp. 1827-1836 (2015).
16. Shirmardi, M., Alavi, N., Lima, E.C., Takdastan, A.,
Mahvi, A.H., and Babaei, A.A. Removal of atrazine
as an organic micro-pollutant from aqueous solutions:
A comparative study", Process Saf. Environ., 103, pp.
23-35 (2016).
17. Taha, S.M., Amer, M.E., Elmarsafy, A.E., and Elkady,
M.Y. Adsorption of 15 di erent pesticides on untreated
and phosphoric acid treated biochar and charcoal
from water", J. Environ. Chem. Eng., 2(4), pp.
2013-2025 (2014).
18. Vukcevic, M.M., Kalijadis, A.M., Vasiljevic, T.M.,
Babic, B.M., Lausevic, Z.V., and Lausevic, M.D.
Production of activated carbon derived from waste
hemp (Cannabis sativa) bers and its performance in
pesticide adsorption", Micropor. Mesopor. Mat., 214,
pp. 156-165 (2015).
19. De Smedt, C., Ferrer, F., Leus, K., and Spanoghe,
P. Removal of pesticides from aqueous solutions by
adsorption on zeolites as solid adsorbents", Adsorpt.
Sci. Technol., 33(5), pp. 457-485 (2015).
20. Huong, P.T., Lee, B.K., and Kim, J. Improved
removal of 2-chlorophenol by a synthesized Cu-nano
zeolite", Process Saf. Environ., 100, pp. 272-280
(2016).
21. Davies, J.E.D. and Jabeen, N. The adsorption of
herbicides and pesticides on clay minerals and soils.
Part 2. Atrazine", J. Incl Phenom. Macro. Chem.,
46(1), pp. 57-64 (2003).
22. Clausen, L., Fabricius, I., and Madsen, L. Adsorption
of pesticides onto quartz, calcite, kaolinite, and -
alumina", J. Environ. Qual, 30(3), pp. 846-857 (2001).
23. Abdeen, Z. and Mohammad, S.G. Study of the
adsorption eciency of an eco-friendly carbohydrate
polymer for contaminated aqueous solution by
organophosphorus pesticide", Open Journal of Organic
Polymer Materials, 4(1), pp. 16-28 (2013).
24. Carneiro, R.T.A., Taketa, T.B., Neto, R.J.G., Oliveira,
J.L., Campos, E.V.R., de Moraes, M.A., da Silva,
C.M.G., Beppu, M.M., and Fraceto, L.F. Removal
of glyphosate herbicide from biopolymer membranes",
J. Environ. Manage., 151, pp. 353-360 (2015).
25. Xu, C.-H., Zhu, L.-J., Wang, X.-H., Lin, S., and
Chen, Y.-M. Fast and highly ecient removal of
chromate from aqueous solution using nanoscale zerovalent
iron/activated carbon (NZVI/AC)", Water Air
Soil. Pollut., 225(2), pp. 1845-1857 (2014).
26. Aksu, Z. and Kabasakal, E. Batch adsorption of
2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous
solution by granular activated carbon", Sep. Purif.
Technol., 35(3), pp. 223-240 (2004).
27. Dehghani, M., Nasseri, S., and Karamimanesh, M.
Removal of 2,4-dichlorophenolyxacetic acid (2,4-D)
herbicide in the aqueous phase using modi ed granular
activated carbon", Iranian J. Environ. Health Sci.
Eng., 12(1), pp. 28-38 (2014).
28. Hameed, B.H., Salman, J.M., and Ahmad, A.L. Adsorption
isotherm and kinetic model of 2,4-D pesticide
on activated carbon derived from date stones", J.
Hazard. Mater., 163, pp. 121-126 (2009).
Sh. Jokar Baloochi et al./Scientia Iranica, Transactions C: Chemistry and ... 25 (2018) 1395{1411 1409
29. Jassem, M.S., Abdulkarim, M., and Huda S.H. Adsorption
of 2,4-dichlorophenoxyacetic acid onto coconut
activated carbon: kinetics and equilibrium studies",
Al-Mustansiriyah J. Sci., 22(6), pp. 377-384
(2009).
30. Njoku, V.O. and Hameed B.H. Preparation
and characterization of activated carbon from
corncorb by chemical activation by H3PO4 for
2,4-dichlorophenoxyacetic acid adsorption", Chem.
Eng. J., 173, pp. 391-399 (2011).
31. Njoku, V.O., Asif, M., and Hameed, B.H. 2,4-
dichlorophenoxyacetic acid adsorption onto coconut
shell-activated carbon: isotherm and kinetic modeling",
Desalin. Water Treat., 55(1), pp. 132-141 (2015).
32. Salman, J.M. and Al-Saad, K.A. Adsorption of 2,4-
dichlorophenoxyacetic acid onto data seeds activated
carbon: equilibrium, kinetic and thermodynamic studies",
Int. J. Chem. Sci., 10(2), pp.677-690 (2012).
33. Salman, J.M. and Hameed B.H. Adsorption of 2,4-
dichlorophenoxyacetic acid and carbofuran pesticides
onto granular activated carbon", Desalination, 256,
pp. 129-135 (2010).
34. Khoshnood, M. and Azizian, S. Adsorption of 2,4-
dichlorophenoxyacetic acid pesticide by graphitic carbon
nanostructures prepared from biomasses", J. Ind.
Eng. Chemi., 18(5), pp. 1796-1800 (2012).
35. Cheng, Y., Jing, L., and Zongshan, Z. E ective
organochlorine pesticides removal from aqueous
systems by magnetic nanospheres coated with
polystyrene", J. Wuhan Univ. Technol-Mater. Sci.
Ed., 29(1), pp. 168-173 (2014).
36. Fu, F., Ma, J., Xie, L., Tang, B., Han, W., and Lin, S.
Chromium removal using resin supported nanoscale
zero-valent iron", J. Environ. Manage., 128, pp. 822-
827 (2013).
37. Shi, J., Long, C., and Li, A. Selective reduction of
nitrate into nitrogen using Fe-Pd bimetallic nanoparticle
supported on chelating resin at near-neutral pH",
Chem. Eng. J., 286, pp. 408-412 (2016).
38. Chekli, L., Bayatsarmadi, B., Sekine, R., Sarkar, B.,
Shen, A.M., Scheckel, K.G., Skinner, W., Naidu, R.,
Shon, H.K., Lombi, E., and Donner, E. Analytical
Characterization of nanoscale zero-valent iron: An
illustrated methodological review", Anal. Chim. Acta.,
903, pp. 13-35 (2016).
39. Kakavandi, B., Kalantary, R.R., Farzadkia, M., Mahvi,
A.H., Esra li, A., Azari, A., Yari, A.R., and Javid,
A.B. Enhanced chromium (VI) removal using activated
carbon modi ed by zero valent iron and silver
bimetallic nanoparticles", Iranian J. Environ. Health
Sci. Eng., 12(1), pp. 115-125 (2014).
40. Ling, X., Li, J., Zhu, W., Zhu, Y., Su, X., Shen, J.,
Han, W., and Wang, L. Synthesis of nanoscale zerovalent
iron/ordered mesoporous carbon for adsorption
and synergistic reduction of nitrobenzene", Chemosphere,
87(6), pp. 655-660 (2012).
41. Quan, G., Sun, W., Yan, J., and Lan, Y. Nanoscale
zero-valent iron supported on biochar: characterization
and reactivity for degradation of acid orange
7 from aqueous solution", Water Air Soil. Pollut.,
225(11), pp. 2195-2205 (2014).
42. Wang, C., Luo, H., Zhang, Z., Wu, Y., Zhang,
J., and Chen, S. Removal of As(III) and As(V)
from aqueous solution using nanoscale zero valent
iron-reduced graphite oxide modi ed composites", J.
Hazard. Mater., 268, pp. 124-131 (2014).
43. Lu, H., Qiao, X., Wang, W., Tan, F., Xia, Z., and
Chen, J. Facile preparation of mesoporous silica/nano
zero-valent iron composite for Pb (II) removal from
aqueous solution", Desalin. Water Treat., 57(23), pp.
10745-10756 (2016).
44. Hameed, A.K., Rahim, M.H.A., Dewayanto, N., and
Nordi, M.R. Adsorption study of chloroform onto
zero valent iron supported on mesoporous silica", Adv.
Appl. Sci. Res., 8(2), pp. 62-68 (2017).
45. Chi, Z., Wang, Z., Chu, H., Bin, P., and Lucian,
L. Bentonite-supported nanoscale zero-valent iron
granulated electrodes for industrial wastewater remediation",
RSC Adv., 7, pp. 44605-44613 (2017).
46. Georgiou, Y., Dimos, K., Beltsios, K., Karakassides,
M.A., and Deligiannakis, Y. Hybrid [Polysulfone-zero
valent iron] membranes: synthesis, characterization
and application for AsIII remediation", Chem. Eng.
J., 281, pp. 651-660 (2015).
47. Padil, V.V.T., Filip, J., Suresh, K.I., Wac lawek, S.,
and Cernk, M. Electrospun membrane composed
of poly[Acrylonitrile-co-(Methyl acrylate)-co-(Itaconic
acid)] terpolymer and ZVI nanoparticles and its application
for the removal of arsenic from water", RSC
Adv., 6, pp. 110288-110300 (2016).
48. Mohammadi, A. and Karimi, A.A. Methylene blue
removal using surface-modi ed TiO2 nanoparticles: A
comparative study on adsorption and photocatalytic
degradation", J. Water Environ. Nanotechnol., 2(2),
pp. 118-128 (2017).
49. Selishchev, D., Kolinko, P., and Kozlov, D. In
uence
of adsorption on the photocatalytic properties
of TiO2/AC composite materials in the acetone and
cyclohexane vapor photooxidation reactions", J. Photochem.
Photobiol. A., 229(1), pp. 11-19 (2012).
50. Abdennouri, M., Elhalil, A., Farnane, M., Tounsadi,
H., Mahjoubi, F.Z., Elmoubarki, R., Sadiq, M.,
Khamar, L., Galadi, A., Baalala, M., Bensitel, M.,
El ha ane, Y., Smith, A., and Barka, N. Photocatalytic
degradation of 2,4-D and 2,4-DP herbicides pn
Pt/TiO2 nanoparticles", J. Saudi Chem. Soc., 19, pp.
485-493 (2015).
51. Kudlek, E., Silvestri, D., Waclawek, S., Padil, V.V.T.,
Stuchlik, M., Volesky, L., Kejzlar, P., and Cernik, M.
TiO2 immobilized on biopolymer nano bers for the
removal of bisphenol A and diclofenac from water",
Ecol. Chem. Eng. S., 24(3), pp. 417-429 (2017).
1410 Sh. Jokar Baloochi et al./Scientia Iranica, Transactions C: Chemistry and ... 25 (2018) 1395{1411
52. Nie, L., Wang, J., and Yu, J. Preparation of a
Pt/ TiO2/cotton ber composite catalyst with low air
resistance for ecient formaldehyde oxidation at room
temperature", RSC Adv., 7, pp. 21389-21397 (2017).
53. Pei, J., Ma, W., Li, R., Li, Y., and Du, H. Preparation
and photocatalytic properties TiO2-Al2O3 composite
loaded catalyst", J. Chem., 2015, pp. 1-7 (2015).
54. Zeng, Y., Xue, Y., Liang, S., and Zhang, J. Removal
of
uoride from aqueous solution by TiO2 and TiO2-
SiO2 nanocomposite", Chem. Spec. Bioavailab., 29(1),
pp. 25-32 (2017).
55. Xing, B., Shi, C., Zhang, C., Yi, G., Chen, L.,
Guo, H., Huang, G., and Cao, J. Preparation of
TiO2/activated carbon composites for photocatalytic
degradation of RhB under UV light irradiation", J.
Nanomater., 2016, pp. 1-10 (2016).
56. Alalm, M.G., Taw k, A., and Ookawara, S. Enhancement
of photocatalytic activity of TiO2 by immobilization
on activated carbon for degradation of
pharmaceuticals", J. Environ. Chem. Eng., 4(2), pp.
1929-1937 (2016).
57. Rosa, S.M.C., Nossol, A.B.S., Nossol, E., Zarbin,
A.J.G., and Peralte-Zamora, P.G. Non-synergistic
UV-A photocatalytic degradation of estrogens by
nano-TiO2 supported on activated carbon", J. Braz.
Chem. Soc., 28(4), pp. 582-588 (2017).
58. Tamilselvi, S., Asaithambi, M., and Sivakumar, P.
Nano-TiO2-loaded activated carbon ber composite
for photodegradation of a textile dye", Desalin. Water
Treat., 57(33), pp. 15495-15502 (2016).
59. Zhang, J., Liu, F., Gao, J., Chen, Y., and Hao.
X. Ordered mesoporous TiO2/activated carbon for
adsorption and photocatalysis of acid red 18 solution",
Bio Resources, 12(4), pp. 9086-9102 (2017).
60. Saritha, B. and Chockalingam, M.P. Photodegradation
of Malachite green dye using TiO2/activated
carbon composite", International Journal of Civil Engineering
and Technology, 8(8), pp. 156-163 (2017).
61. Li, Y., Chen, J., Liu, J., Ma, M., Chen, W., and Li,
L. Activated carbon supported TiO2-photocatalysis
doped with Fe ions for continuous treatment of dye
wastewater in a dynamic reactor", J. Environ. Sci.,
22(8), pp. 1290-1296 (2010).
62. Reddy, D.H.K., Harinath, Y., Seshaiah, K., and
Reddy, A. Biosorption of Pb (II) from aqueous solutions
using chemically modi ed Moringa oleifera tree
leaves", Chem. Eng. J., 162(2), pp. 626-634 (2010).
63. Liu, A. and Zhang, W. Fine structural features of
core-shell nanoscale zero-valent iron characterized with
aberration-corrected scanning transmission electron
microscopy (Cs-ATEM)", RSC. J., 139, pp. 4512-4518
(2014).
64. Li, H., Chen, Y.Q., Chen, S., Wang, X.L., Guo, S.,
Qiu, Y.F., Liu, Y.D., Duan, X.L., and Yu, Y.J. Wheat
straw biochar-supported nanoscale zerovalent iron for
removal of trichloroethylene from groundwater", PLoS
ONE, 12(3), e0172337 (2017).
65. Kannaiyan, D., Kochuveedu, S.T., Jang, Y.H., Jang,
Y.J., Lee, J.Y., Lee, J., Kim, J., and Kim, D.H.
Enhanced photophysical properties of nanopatterned
titania nanodots/ nanowires upon hybridization with
silica via block co-polymer template sol-gel process",
Polymers, 2, pp. 490-504 (2010).
66. Njoku, V.O., Foo, K.Y., Asif, M., and Hameed,
B.H. Preparation of activated carbons from rambutan
(Nephelium lappaceum) peel by microwave-induced
KOH activation for acid yellow 17 dye adsorption",
Chem. Eng. J., 250, pp. 198-204 (2014).
67. Diaz-Flores, P.E., Leyva-Ramos, R., Rangel-Mendez,
J.R., Ortiz, M.M., Guerrero-Coronado, R.M., and
Mendoza-Barron, J. Adsorption of 2,4- dichlorophenoxyacetic
acid from aqueous solution on activated
carbon cloth", J. Environ. Eng. Manage., 16(4), pp.
249-257 (2006).
68. Kim, S.J., Shim, W.G., Kim, T.Y., Moon, H., Kim,
S.J., and Cho, S.Y. Adsorption equilibrium characteristics
of 2, 4-Dichlorophenoxyacetic acid and 2, 4-
dinitrophenol on granular activated carbons", Korean
J. Chem. Eng., 19(6), pp. 967-977 (2002).
69. Noubactep, C. An analysis of the evolution of reactive
species in Fe0/H2O systems", J. Hazard. Mater., 168,
pp. 1626-1631 (2009).
70. Tang, J., Tang, L., Feng, H., Zeng, G., Dong, H.,
Zhang, C., Huang, B., Deng, Y., Wang, J., and
Zhou, Y. pH dependent degradation of p-nitrophenol
by sul dated nanoscale zerovalent iron under aerobic
or anoxic condition", J. Hazard. Mater. (2016).
http://dx.doi.org/10.1016/j.jhazmat.2016.07.042.
71. Du, Z., Zhao, C., Chen, J., and Zhang, D. DFT study
of the interactions of H2O, O2 and H2O + O2 with
TiO2 (101) surface", Comput. Mater. Sci., 136, pp.
173-180 (2017).
72. Langergren, S. and Svenska, B.K. About the theory
of so-called adsorption of soluble substances" [Zur
theorie de sogenannten adsorption geloester sto e],
Veternskapsakad Handlingar, 24(4), pp. 1-39 (1898).
73. Ho, Y.S. Review of second-order models for adsorption
systems", J. Hazard. Mater., 136(3), pp. 681-689
(2006).
74. Weber, W.J. and Morris, J.C. Kinetics of adsorption
on carbon from solution", Journal of the Sanitary
Engineering Division, 89(2), pp. 31-60 (1963).
75. Langmuir, I. The adsorption of gases on plane surface
of glass, mica and platinum", J. Am. Chem. Soc.,
40(9), pp. 1361-1403 (1918).
76. Hall, K.R., Eagleton, L.C., Acrivos, A., and Vermeulen,
T. Pore-and solid-di usion kinetics in xedbed
adsorption under constant-pattern conditions",
Ind. Eng. Chem. Fund., 5(2), pp. 212-223 (1966).
77. Freundlich, H. Over the adsorption in solution" [ Uber
die adsorption in losungen], Zeitschrift fur Physikalische
Chemie, 57(1), pp. 385-470 (1907).
78. Tempkin, M.I. and Pyzhev, V. Kinetics of ammonia
synthesis on promoted iron catalyst", Acta. Phys.
Chim., 12(1), pp. 327-356 (1940).
Sh. Jokar Baloochi et al./Scientia Iranica, Transactions C: Chemistry and ... 25 (2018) 1395{1411 1411
79. Redlich, O. and Peterson, D.L. A useful adsorption
isotherm", J. Phys. Chem., 63(6), pp. 1024-1024
(1959).
80. Krbyk, C ., Putun, A.E. and Putun, E. Equilibrium,
kinetic, thermodynamic studies of the adsorption of
Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid
onto biomass-based activated carbon by ZnCl2 activation",
Surf, Interface, 8, pp. 182-192 (2017).