Ferric ion modified nano-MOF-5 synthesized by direct mixing approach: A highly efficient adsorbent for methylene blue dye

Document Type : Article

Authors

Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht

Abstract

In this study, the adsorption of methylene blue (MB) dye has been studied with modified Fe-MOF-5 and MOF-5, synthesized at room temperature by direct mixing approach. The morphology and physicochemical properties of prepared catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The removal rate of Fe-MOF-5 was considerably greater MOF-5 which shows the adsorption performance of MOF-5 can be improved through the modification. The influences of various parameters on the adsorption interaction of the prepared compounds were considered in pH value, contact time, temperature, adsorbent dosage and concentration of MB. Consequently, the adsorption kinetics, thermodynamics and isotherms were consistently explored. To predict the adsorption isotherms and to specify the characteristic parameters for process design, four isotherm models such as Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) were applied. The experimental isotherm data were found to fit the Langmuir model properly. Additionally, adsorption kinetic data were tested using pseudo-first-order, pseudo-second-order and Elovich model and were found to be fitted into pseudo-second-order model. The thermodynamic parameters illustrated that the adsorption was a spontaneous and endothermic process.

Keywords

Main Subjects


References
1. Yaghi, O.M., O'Kee e, M., Ockwig, N.W., Chae, H.K.,
Eddaoudi, M., and Kim, J. Reticular synthesis and
the design of new materials", Nature, 423(6941), pp.
705-714 (2003).
2. Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., and
Su, C.-Y. Applications of metal-organic frameworks
in heterogeneous supramolecular catalysis", Chem.
Soc. Rev., 43(16), pp. 6011-6061 (2014).
3. Li, J.R., Sculley, J., and Zhou, H.C. Metal-organic
frameworks for separations", Chem. Rev., 112(2), pp.
869-932 (2012).
4. Sumida, K., Rogow, D.L., Mason, J.A., McDonald,
T.M., Bloch, E.D., Herm, Z.R., Bae, T.H., and
Long, J.R. Carbon dioxide capture in metal-organic
frameworks", Chem. Rev., 112(2), pp. 724-781 (2012).
5. Huang, C., Song, M., Gu, Z., Wang, H., and Yan,
X. Probing the adsorption characteristic of metalorganic
framework MIL-101 for volatile organic compounds
by quartz crystal", Envir. Sci. Tech., 45, pp.
4490-4496 (2011).
6. Seo, P.W., Bhadra, B.N., Ahmed, I., Khan, N.A., and
Jhung, S.H. Adsorptive removal of pharmaceuticals
and personal care products from water with functionalized
metal-organic frameworks: remarkable adsorbents
with hydrogen-bonding abilities", Sci. Rep., 6, pp.
2044-2051 (2016).
7. Lin, S., Song, Z., Che, G., Ren, A., Li, P., Liu, C.,
and Zhang, J. Adsorption behavior of metal-organic
A. Fallah Shojaei et al./Scientia Iranica, Transactions C: Chemistry and ... 25 (2018) 1323{1334 1331
frameworks for methylene blue from aqueous solution",
Micropor. Mesopor. Mat., 193, pp. 27-34 (2014).
8. Xie, L., Liu, D., Huang, H., Yang, Q., and Zhong,
C. Ecient capture of nitrobenzene from waste water
using metal-organic frameworks", Chem. Eng. J., 246,
pp. 142-149 (2014).
9. Kumar, P., Paul, A.K., and Deep, A. Sensitive
chemosensing of nitro group containing organophosphate
pesticides with MOF-5", Micropor. Mesopor.
Mat., 195, pp. 60-66 (2014).
10. Wang, X.L., Fan, H.L., Tian, Z., He, E.Y., Li,
Y., and Shangguan, J. Adsorptive removal of sulfur
compounds using IRMOF-3 at ambient temperature",
Appl. Surf. Sci., 289, pp. 107-113 (2014).
11. Huo, S.-H. and Yan, X.-P. Metal-organic framework
MIL-100(Fe) for the adsorption of malachite green
from aqueous solution", J. Mater. Chem., 22, pp.
7449-7455 (2012).
12. Culp, S.J. and Beland, F.A. Malachite green: A
toxicological review", Int. J. Toxicol., 15(3), pp. 219-
238 (1996).
13. Rafatullah, M., Sulaiman, O., Hashim, R., and Ahmad,
A. Adsorption of methylene blue on low-cost
adsorbents: A review", J. Hazard. Mater., 177(1), pp.
70-80 (2010).
14. Wang, B., Lv, X.L., Feng, D., Xie, L.H., Zhang, J., Li,
M., Xie, Y., Li, J.R., and Zhou, H.C. Highly stable
Zr(IV)-based metal-organic frameworks for the detection
and removal of antibiotics and organic explosives
in water", J. Am. Chem. Soc., 138(19), pp. 6204-6216
(2016).
15. MiarAlipour, S., Friedmann, D., Scott, J., and Amal,
R. TiO2/porous adsorbents: Recent advances and
novel applications", J. Hazard. Mater., 341, pp. 404-
423 (2018).
16. Opelt, S., Turk, S., Dietzsch, E., Henschel, A., Kaskel,
S., and Klemm, E. Preparation of palladium supported
on MOF-5 and its use as hydrogenation catalyst",
Catal. Commun., 9(6), pp. 1286-1290 (2008).
17. McGaughey, A.J.H. and Kaviany, M. Thermal conductivity
decomposition and analysis using molecular
dynamics simulations. Part II. Complex silica structures",
International J. Heat Mass Transf., 47(8), pp.
1799-1816 (2004).
18. Cele, M.N., Friedrich, H.B., and Bala, M.D. Liquid
phase oxidation of n-octane to C8 oxygenates over
modi ed Fe-MOF-5 catalysts", Catal. Commun., 57,
pp. 99-102 (2014).
19. Li, J., Cheng, S., Zhao, Q., Long, P., and Dong, J.
Synthesis and hydrogen-storage behavior of metalorganic
framework MOF-5", Int. J. Hydrogen Energ.,
34(3), pp. 1377-1382 (2009).
20. Li, Y., Zhang, S., and Song, D. A luminescent
metal-organic framework as a turn-on sensor for DMF
vapor", Angew. Chemie. - Int. Ed., 52, pp. 710-713
(2013).
21. Ho, Y.S. and McKay, G. Pseudo-second order model
for sorption processes", Process Biochem., 34(5), pp.
451-465 (1999).
22. Li, H., Eddaoudi, M., O'Kee e, M., and Yaghi,
O.M. Design and synthesis of an exceptionally stable
and highly porous metal-organic framework", Nature,
402(6759), pp. 276-279 (1999).
23. Huang, L. Synthesis, morphology control, and properties
of porous metal-organic coordination polymers",
Micropor. Mesopor. Mat., 58(2), pp. 105-114 (2003).
24. Ha zovic, J., Bj?rgen, M., Olsbye, U., Dietzel, P.D.C.,
Bordiga, S., Prestipino, C., Lamberti, C., and Lillerud,
K.P. The inconsistency in adsorption properties and
powder XRD data of MOF-5 is rationalized by framework
interpenetration and the presence of organic and
inorganic species in the nanocavities", J. Am. Chem.
Soc., 129(12), pp. 3612-3620 (2007).
25. Sabouni, R., Kazemian, H., and Rohani, S. A novel
combined manufacturing technique for rapid production
of IRMOF-1 using ultrasound and microwave
energies", Chem. Eng. J., 165(3), pp. 966-973 (2010).
26. Khan, J., Rades, T., and Boyd, B.J. Lipid-based formulations
can enable the model poorly water-soluble
weakly basic drug cinnarizine to precipitate in an
amorphous-salt form during in vitro digestion", Mol.
Pharm., 13, pp. 3783-3793 (2016).
27. Reineke, T.M., Eddaoudi, M., Fehr, M., Kelley, D.,
and Yaghi, O.M. From condensed lanthanide coordination
solids to microporous frameworks having
accessible metal sites", J. Am. Chem. Soc., 121(8),
pp. 1651-1657 (1999).
28. Liu, X., Luo, J., Zhu, Y., Yang, Y., and Yang, S.
Removal of methylene blue from aqueous solutions by
an adsorbent based on metal-organic framework and
polyoxometalate", J. Alloy. Compd., 648, pp. 986-993
(2015).
29. Dod, R., Banerjee, G., and Saini, S. Adsorption of
methylene blue using green pea peels (Pisum sativum):
A cost-e ective option for dye-based wastewater treatment",
Biotechnol. Bioproc. E., 17, pp. 862-874
(2012).
30. Chowdhury, S., Balasubramanian, R., and Das, P.
Novel carbon-based nanoadsorbents for removal of
synthetic textile dyes from wastewaters", Green Chemistry
for Dyes Removal from Waste Water: Research
Trends and Applications, pp. 35-82 (2015).
31. La , R., ben Fradj, A., Ha ane, A., and Hameed, B.H.
Co ee waste as potential adsorbent for the removal of
basic dyes from aqueous solution", Korean J. Chem.
Eng., 31(12), pp. 2198-2206 (2014).
32. Chang, Y., Lai, J.Y., and Lee, D.J. Thermodynamic
parameters for adsorption equilibrium of heavy metals
and dyes from wastewaters: Research updated",
Bioresource Technol., 222, pp. 513-516 (2016).
33. Du, J.J., Yuan, Y.P., Sun, J.X., Peng, F.M., Jiang,
X., Qiu, L.G., Xie, A.J., Shen, Y.H., and Zhu, J.F.
New photocatalysts based on MIL-53 metal-organic
1332 A. Fallah Shojaei et al./Scientia Iranica, Transactions C: Chemistry and ... 25 (2018) 1323{1334
frameworks for the decolorization of methylene blue
dye", J. Hazard. Mater., 190(1-3), pp. 945-951 (2011).
34. Hasan, Z. and Jhung, S.H. Removal of hazardous
organics from water using metal-organic frameworks
(MOFs): Plausible mechanisms for selective adsorptions",
J. Hazard. Mater., 283, pp. 329-339 (2015).
35. Gurses, A., Dogar, C ., Yalcin, M., Acikyildiz, M.,
Bayrak, R., and Karaca, S. The adsorption kinetics of
the cationic dye, methylene blue, onto clay", J. Hazard.
Mater., 131(1), pp. 217-228 (2006).
36. Canli, M., Abali, Y., and Bayca, S.U. Removal of
methylene blue by natural and ca and k-exchanged
zeolite treated with hydrogen peroxide", Physicochem.
Probl. Mi., 49, pp. 481-496 (2013).
37. Dogan, M., Abak, H., and Alkan, M. Biosorption
of methylene blue from aqueous solutions by hazelnut
shells: Equilibrium, parameters and isotherms", Water,
Air, Soil Poll., 192(1-4), pp. 141-153 (2008).
38. Sarici-Ozdemir, C. Adsorption and desorption kinetics
behaviour methylene blue onto activated carbon
and silver activated carbon", New Biotechnol., 29,
S177 (2012).
39. Liu, T., Li, Y., Du, Q., Sun, J., Jiao, Y., Yang,
G., Wang, Z., Xia, Y., Zhang, W., Wang, K., Zhu,
H., and Wu, D. Adsorption of methylene blue from
aqueous solution by graphene", Colloid. Surfaces B:
Biointerfaces, 90, pp. 197-203 (2012).
40. Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J.,
Wang, Y., Wu, S., Wang, Z., Xia, Y., and Xia, L.
Comparative study of methylene blue dye adsorption
onto activated carbon, graphene oxide, and carbon
nanotubes", Chem. Eng. Res. Des., 91(2), pp. 361-368
(2013).
41. Shao, Y., Zhou, L., Bao, C., Ma, J., Liu, M., and
Wang, F. Magnetic responsive metal-organic frameworks
nanosphere with core-shell structure for highly
ecient removal of methylene blue", Chem. Eng. J.,
283, pp. 1127-1136 (2016).
42. Zhang, C.-F., Qiu, L.-G., Ke, F., Zhu, Y.-J., Yuan,
Y.-P., Xu, G.-S., and Jiang, X. A novel magnetic
recyclable photocatalyst based on a core-shell metalorganic
framework Fe3O4@MIL-100(Fe) for the decolorization
of methylene blue dye", J. Mater. Chem. A,
1(45), p. 14329 (2013).
43. Foo, K.Y. and Hameed, B.H. Insights into the modeling
of adsorption isotherm systems", Chem. Eng. J.,
156, pp. 2-10 (2010).
44. Njoku, V.O., Foo, K.Y., Asif, M., and Hameed,
B.H. Preparation of activated carbons from rambutan
(nephelium lappaceum) peel by microwave-induced
KOH activation for acid yellow 17 dye adsorption",
Chem. Eng. J., 250, pp. 198-204 (2014).
45. Rondon, W., Freire, D., De Benzo, Z., Sifontes, A.B.,
Gonzalez, Y., Valero, M., and Brito, J.L. Application
of 3A zeolite prepared from venezuelan kaolin for removal
of Pb (II) from wastewater and its determination
by
ame atomic absorption spectrometry", Am. J.
Anal. Chem., 4, pp. 584-593 (2013).
46. Kumar, M. and Tamilarasan, R. Modeling of experimental
data for the adsorption of methyl orange from
aqueous solution using a low cost activated carbon
prepared from Prosopis", Pol. J. Chem. Technol.,
15(2), pp. 29-30 (2013).