Investigation into thermally activated migration of fullerene-based nanocars

Document Type : Article

Authors

Nano Robotics Laboratory, Center of Excellence in Design, Robotics, and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

The rotational and translational motion of nanocars and nanotrucks as well as their motion regimes at different temperatures are investigated. In recent years, few similar types of molecular machines have been simulated. In contrast to previous studies which have used the Rigid-Body Molecular Dynamics (RB MD) method, an all-atom model and classic atomistic dynamics have been employed in this paper to achieve better accuracy. Our results demonstrated that the flexibility of the chassis and its attachment to the gold surface play important roles in the motion of a nanocar. In fact, a heavier and more flexible nanocar chassis reduces its speed compared to a nanotruck. In addition, simulations results are compared with available data from experimental studies done in recent years, and an acceptable agreement between the simulation results and experiments was observed. It was found that both molecules have three different regimes of motion, and the translational and rotational motion are not correlated. Results of this paper increase the knowledge and understanding of thermally-driven fullerene-based nanocars, and can be used to help design nanomachines with high controllability and maneuverability.

Keywords

Main Subjects


References
1. Vives, G. and Tour, J.M. Synthesis of single-molecule
nanocars", Accounts of Chemical Research, 42(3), pp.
473-487 (2009).
2. Kinbara, K. and Aida, T. Toward intelligent molecular
machines: directed motions of biological and
arti cial molecules and assemblies", Chemical Eeviews,
105(4), pp. 1377-1400 (2005).
3. Popov, V.L. Nanomachines: Methods to induce a
directed motion at nanoscale", Physical Review E,
68(2), p. 026608 (2003).
4. Shirai, Y., Osgood, A.J., Zhao, Y., Yao, Y., Saudan,
L., Yang, H., Yu-Hung, C., Alemany, L.B. , Sasaki,
T., Morin, J.F., Guerrero, J.M., Kelly, K.F., and
Tour, J.M. Surface-rolling molecules", Journal of the
American Chemical Society, 128(14), pp. 4854-4864
(2006).
5. Akimov, A.V., Nemukhin, A.V., Moskovsky, A.A.,
Kolomeisky, A.B., and Tour, J.M. Molecular dynamics
of surface-moving thermally driven nanocars",
Journal of Chemical Theory and Computation, 4(4),
pp. 652-656 (2008).
6. Chu, P.-L.E., Wang, L.-Y., Khatua, S., Kolomeisky,
A.B., Link, S., and Tour, J.M. Synthesis and
single-molecule imaging of highly mobile adamantanewheeled
nanocars", ACS Nano, 7(1), pp. 35-41 (2012).
7. Sasaki, T., Morin, J.F., Lu, M., and Tour, J.M.
Synthesis of a single-molecule nanotruc", Tetrahedron
Letters, 48(33), pp. 5817-5820 (2007).
8. Sasaki, T., Osgood, A.J., Alemany, L.B., Kelly, K.F.,
and Tour, J.M Synthesis of a nanocar with an angled
chassis. Toward circling movement", Organic Letters,
10(2), pp. 229-232 (2008).
9. Sasaki, T. and Tour, J.M. Synthesis of a dipolar
nanocar", Tetrahedron Letters, 48(33), pp. 5821-5824
(2007).
10. Shirai, Y., Osgood, A.J., Zhao, Y., Kelly, K.F., and
Tour, J.M. Directional control in thermally driven
single-molecule nanocars", Nano Letters, 5(11), pp.
2330-2334 (2005).
11. Zhang, J., Osgood, A., Shirai, Y., Morin, J.F., Sasaki,
T., Tour, J.M., and Kelly, K.F. Investigating the
motion of molecular machines on surfaces by STM: The
A. Nemati et al./Scientia Iranica, Transactions F: Nanotechnology 25 (2018) 1835{1848 1847
nanocar and beyond", in Nanotechnology IEEE-NANO
7th IEEE Conference on (2007).
12. Shirai, Y., Minami, K., Nakanishi, W., Yonamine,
Y., Joachim, C., and Ariga, K. Driving nanocars
and nanomachines at interfaces: From concept of
nanoarchitectonics to actual use in worldwide race and
hand operation" Japanese Journal of Applied Physics,
55(11), p. 1102A2 (2016).
13. Konyukhov, S.S., I.V. Kupchenko, A.A. Moskovsky,
A.V. Nemukhin, A.V. Akimov, and A.B. Kolomeisky,
Rigid-body molecular dynamics of fullerene-based
nanocars on metallic surfaces", Journal of Chemical
Theory and Computation, 6(9), pp. 2581-2590 (2010).
14. Konyukhov, S., Artemov, N., Kaliman, I., Kupchenko,
I., Nemukhin, A., and Moskovskii, A. Di usion of
fullerene-based nanocars on the surface of a gold crystal",
Moscow University Chemistry Bulletin, 65(4),
pp. 219-220 (2010).
15. Akimov, A.V. and Kolomeisky, A.B. Unidirectional
rolling motion of nanocars induced by electric eld",
The Journal of Physical Chemistry C, 116(42), pp.
22595-22601 (2012).
16. Nemati, A., Pishkenari, H.N., Meghdari, A., and
Shorabpour, S. Nanocar & nanotruck motion on gold
surface", International Conference on Manipulation,
Automation and Robotics at Small Scales (MARSS),
(2016).
17. Nasiri Sarvi, M. and Ahmadian, M.T. Static and
vibrational analysis of fullerene using a newly designed
spherical super element", Scientia Iranica, 19(5), pp.
1316-1323 (2012).
18. Adeli, M., Madani, F., and Sasanpour, P. Synthesis of
graphene/gold hybrid nanomaterials by poly(ethylene
glycol) linkers", Scientia Iranica, 21(3), pp. 1163-1173
(2014).
19. Nejat Pishkenari, H. and Meghdari, A. Tip geometry
e ects in surface characterization with amplitude
modulation AFM", Scientia Iranica, 17(F1), pp. 27-34
(2010).
20. Crisan, O. Molecular nanostructures onto functionalized
semiconductor surfaces: An in-situ atomic force
microscopy study", Scientia Iranica, 17(F2), pp. 154-
161 (2010).
21. Nemati, A., Pishkenari, H.N., Meghdari, A., and
Shorabpour, S. Directing the di usive motion of
fullerene-based nanocars using nonplanar gold surfaces",
Physical Chemistry Chemical Physics, 20(1),
pp. 332-344 (2018).
22. Dutta, B. and Dayal, B. Lattice constants and thermal
expansion of gold up to 878C by X-ray method",
Physica Status Solidi (b), 3(3), pp. 473-477 (1963).
23. Foiles, S., Baskes, M., and Daw, M. Embedded-atommethod
functions for the fcc metals Cu, Ag, Au, Ni,
Pd, Pt, and their alloys", Physical Review B, 33(12),
p. 7983 (1986).
24. Finnis, M. and Sinclair, J. A simple empirical Nbody
potential for transition metals", Philosophical
Magazine A, 50(1), pp. 45-55 (1984).
25. Daw, M.S. and Baskes, M.I. Embedded-atom method:
Derivation and application to impurities, surfaces, and
other defects in metals", Physical Review B, 29(12), p.
6443 (1984).
26. Stukowski, A., Sadigh, B., Erhart, B., and Caro,
A. Ecient implementation of the concentrationdependent
embedded atom method for moleculardynamics
and Monte-Carlo simulations", Modelling
and Simulation in Materials Science and Engineering,
17(7), 075005 (2009).
27. Burkert, U. and Allinger, N.L., Molecular Mechanics,
177, American Chemical Society Washington, DC.
(1982).
28. Watkins, E.K. and Jorgensen, W.L. Per
uoroalkanes:
Conformational analysis and liquid-state properties
from ab initio and Monte Carlo calculations", The
Journal of Physical Chemistry A, 105(16), pp. 4118-
4125 (2001).
29. Allinger, N.L. Conformational analysis. 130. MM2. A
hydrocarbon force eld utilizing V1 and V2 torsional
terms", Journal of the American Chemical Society,
99(25), pp. 8127-8134 (1977).
30. Allinger, N.L., Chen, K., and Lii, J.H. An improved
force eld (MM4) for saturated hydrocarbons", Journal
of computational chemistry, 17(5-6), pp. 642-668
(1996).
31. Allinger, N.L., Yuh, Y.H., and Lii, J.H. Molecular
mechanics. The MM3 force eld for hydrocarbons. 1",
Journal of the American Chemical Society, 111(23),
pp. 8551-8566 (1989).
32. Lii, J.H. and Allinger, N.L. Molecular mechanics.
The MM3 force eld for hydrocarbons. 3. The van
der Waals' potentials and crystal data for aliphatic
and aromatic hydrocarbons", Journal of the American
Chemical Society, 111(23), pp. 8576-8582 (1989).
33. Lii, J.H. and Allinger, N.L. Molecular mechanics.
The MM3 force eld for hydrocarbons. 2. Vibrational
frequencies and thermodynamics", Journal of
the American Chemical Society, 111(23), pp. 8566-
8575 (1989).
34. Plimpton, S. Fast parallel algorithms for shortrange
molecular dynamics", Journal of Computational
Physics, 117(1), pp. 1-19 (1995).
35. Valiev, M., Bylaska, E.J., Govind, N., Kowalski,
K., Straatsma, T.P., Van Dam, H.J., Wang, D.,
Nieplocha, J., Apra, E., and Windus, T.L. NWChem:
a comprehensive and scalable open-source solution for
large scale molecular simulations", Computer Physics
Communications, 181(9), pp. 1477-1489 (2010).
36. Heinz, H., Vaia, R., Farmer, B., and Naik, R. Accurate
simulation of surfaces and interfaces of facecentered
cubic metals using 12-6 and 9-6 Lennard-
Jones potentials", The Journal of Physical Chemistry
C, 112(44), pp. 17281-17290 (2008).
37. Qian, H., Sheetz, M.P., and Elson, E.L. Single
particle tracking. Analysis of di usion and
ow in twodimensional
systems", Biophysical Journal, 60(4), p.
910 (1991).
1848 A. Nemati et al./Scientia Iranica, Transactions F: Nanotechnology 25 (2018) 1835{1848
38. Abramo, M.C., Caccamo, C., Costa, D., Pellicane, G.,
and Ruberto, R. Atomistic versus two-body central
potential models of C60: A comparative molecular
dynamics study", Physical Review E, 69(3), p. 031112
(2004)
39. Lohrasebi, A., Neek-Amal, M., and Ejtehadi, M. Directed
motion of C 60 on a graphene sheet subjected
to a temperature gradient", Physical Review E, 83(4),
p. 042601 (2011).
40. Neek-Amal, M., Abedpour, N., Rasuli, S., Naji, A.,
and Ejtehadi, M. Di usive motion of C60 on a
graphene sheet", Physical Review E, 82(5), p. 051605
(2010)
41. Pishkenari, H.N., Nemati, A., Meghdari, A., and
Sohrabpour, S. A close look at the motion of C60 on
gold", Current Applied Physics, 15(11), pp. 1402-1411
(2015).
42. Hosseini Lavasani, S.M., Nejat Pishkenari, H., and
Meghdari, A. Mechanism of 1,12-dicarba-closododecaborane
mobility on gold substrate as a nanocar
wheel", The Journal of Physical Chemistry C, 120(26),
pp. 14048-14058 (2016).
43. Johnson, R.A. and Wichern, D.W., Applied Multivariate
Statistical Analysis, 4, Prentice Hall Englewood
Cli s, NJ (1992).